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ILP? The Traditional Way

(Let’s Make It Fast!)



Speed: Main Goal in General 
Purpose Computer Architecture

 Reduce delay per gate  Technology (~ x1.2/year)
 Improve architecture  Parallelism (~ x1.3/year)

3

Architectural and organisational ideas
have been the main performance drivers

since the mid-1980s until the 2000s

So
ur

ce
: H

en
ne

ss
y

& 
Pa

tte
rs

on
, ©

 E
lse

vie
r 

20
19



Clock Rate
Does Not Grow Much (Anymore!)
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Sources of Parallelism

 Bit-level
 Wider processor datapaths (8163264…)

 Word-level (SIMD)
 Vector processors
 Multimedia instruction sets (Intel’s MMX and SSE, Sun’s VIS, etc.)

 Instruction-level
 Pipelining
 Superscalar
 VLIW and EPIC

 Task- and Application-levels…
 Explicit parallel programming
 Multiple threads
 Multiple applications…
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This lesson:
ILP = Instruction Level Parallelism
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Starting Point (Programmer Model)

Sequential multicycle processor

Cycles

Instructions

1:

2:

3:



ILP?

Instructions

Cycles

?
Standard
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First Step:
Pipelining

Simplest form of Instruction Level 
Parallelism (ILP): Several instructions are 
being executed at once

IF ID EX WB
IF ID EX MEM

IF ID EX MEM WB
IF ID

IF ID

Cycles

In
st

ru
ct
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ns

1:

2:

3:

4:
5:

MEM
WB

EX MEM
EX
WB
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Simple Pipeline

F D E M1 M2 W

RF
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Simple Pipelining

Scope for parallelism is limited:
 Control hazards limit the usability of the pipeline

 Must squash fetched and decoded instruction following a branch
 Data hazards limit the usability of the pipeline

Whenever the next instruction cannot be executed, the pipeline 
is stalled and no new useful work is done until the “problem” is 
solved (e.g., cache miss)

 Rigid sequencing
 Special “slots” for everything even if sometimes useless (e.g., 

MEM before WB)
 Every instruction must be coerced to the same framework
 Structural hazards avoided “by construction”
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Simple Pipeline with Forwarding

F E M1 M2 W

RF

D



ILP So Far…

Instructions

Cycles

?
Pipelining

Standard
12
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Dynamic Scheduling: The Idea

Extend the scope to extract parallelism:
divd $f0, $f2, $f4
addd $f10, $f0, $f8
subd $f12, $f8, $f14

Why not to execute subd while addd waits for 
the result of divd?

Relax a fundamental rule: instructions can be 
executed out of program order! (but the 
result must still be correct…)
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Break the Rigidity of the Basic 
Pipelining

 Continue fetching and decoding even and especially 
if one cannot execute previous instructions

 Keep writeback waiting if there is a structural hazard, 
without slowing down execution

Solution:
 Split the tasks in independent units/pipelines

 Fetch and decode
 Execute
Writeback

 Clearly, instructions will now produce results out-of-
order (OOO)
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Dynamically Scheduled Processor

F D

ALU

ROB W

RF

MEM
(3)

RS

RS

F D E/M1/… W



Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still 

required?
WAW is a completely new problem—impossible 

before; WAR often cannot occur

16



Reservation Stations

 A reservation station checks that the operands are available (RAW) and that 
the Execution Unit is free (Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

17
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Reservation Stations

Reservation
Station

Fetch&Decode Unit and Register File 
(1) Fetched operation descriptions and

(2a) known operands (from RF)
or (2b) source-operation tags

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Dependent Execution Unit
(1) Description of operations ready to execute
with (2) corresponding tags and (3) operands



Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still 

required?
WAW is a completely new problem—impossible 

before; WAR often cannot occur
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WAR and WAW Data Dependences

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f5, 10

addd has a RAW dependence on divd
subd has a WAR dependence on addd
adddi has a WAW dependence on divd

20



In-order Completion

Simple pipelines have no WAR and WAW 
hazards by construction

EX5EX4IF ID EX1 WB

IF ID EX MEM

IF ID EX MEM WB

MEM

WB

EX2 EX3

IF ID EX MEM WB

EX

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10

21



Out-of-order Completion

Dynamic pipelines may create WAW hazards

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10

IF ID EX1

IF ID

IF ID EX WB

EX2 EX4

IF ID EX

EX5EX3 WB

EX WB

WBWB

EX

22



Register Renaming

WAW and WAR dependences are also called 
name dependences: they do not carry a value 
between to instructions

Often created by compilers to reuse the same 
registers

Can be removed by avoiding the use of the 
same “name”   rename the destination 
register whenever a new value is created

Both the compiler (statically) and the processor 
(dynamically) can do that
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Register Renaming

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f4, 10

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4b, $f5, $f6

adddi $f0b, $f4b, 10
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Reservation Stations

Unavailable operands are identified by the name 
of the reservation station in charge of the 
originating instruction

Implicit register renaming, thus removing 
WAR and WAW hazards

New results are seen at their inputs through 
special result bus(es)

Writeback into the registers can be done in-
order or out-of-order

25



Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

26
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Out-of-order Commitment and 
Exceptions

Exception handlers should know exactly where a 
problem has occurred, especially for 
nonterminating exceptions (e.g., page fault) 
so that they handle the event and resume 
exactly where the exception occurred

Of course, one assumes that everything before 
the faulty instruction was executed and 
everything after was not

With OOO dynamic execution it might no longer 
be true…



Precise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

Imprecise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

A Problem with Exceptions…

 Precise exceptions
 Reordering at commit; user 

view is that of a fully in-
order processor

 Imprecise exceptions
 No reordering; out-of-order 

completion visible to the 
user

 The OS/programmer must 
be aware of the problem 
and take appropriate action 
(e.g., execute again the 
complete subroutine where 
the problem occurred) Generally unacceptable in 

contemporary systems
(e.g., virtual memory, I/O 
interrupts, unsupported 

instructions)28
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Reordering

Fundamental observation: a processor can 
do whatever it wants provided that it gives the 
appearance of sequential execution (i.e., the 
architectural machine state is updated in 
program order)

New phase: COMMIT or RETIRE or GRADUATE 
(besides the usual F, D, E, W)

This observation is fundamental because it 
allows many techniques (precise interrupts, 
speculation, multithreading, etc.)



Reordering Instructions 
at Writeback

 Needs a reorder buffer in the Commit Unit

to MEM
and RF

from
F&D Unit

0
0
0
1
0
0

Register Address ValueTag

from EUs

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

The “external” and “internal” 
identifiers of the instruction

The destination of the result:
register or memory address

The result,
once available

Was there an 
exception?

30
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Reorder Buffer

Commit Unit
(Reorder Buffer)

Fetch&Decode Unit
(1) Fetched-operation tags in original

order, (2) destination register or
address, and (3) PC

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Register File and Memory
For each instruction, in the original fetch order,

(1) destination register or address and (2) value to write



Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Computation advances 
independently from machine 

state updates

Machine state 
is updated in 

order

32



Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still 

required?
WAW is a completely new problem—impossible 

before; WAR often cannot occur

33



Committing Instructions (1/4)

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3
34



Committing Instructions (2/4)

0
0
0
0
0

0

Register Address ValueTag

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Wait until the oldest instruction has its result
35



Committing Instructions (3/4)

0
0
0
0
0

0

Register Address ValueTag

0x98cd 76a2

$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x98cd76a2 to memory location 0xa87fb351
36



Committing Instructions (4/4)

0
0
0
0
0

0

Register Address ValueTag

$f5 0x7677 abcd0x1000 000c

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0xa2cd374f to register $f5
37



Reordering and Precise Exceptions

How does this help with exceptions?
When a synchronous exception happens, we do 

not report it but we mark the entry 
corresponding to the instruction which caused 
the exception in the ROB

When we would be ready to commit the 
instruction, we raise the exception instead

We also trash the content of the ROB and of all 
RSs

38



Reporting Exceptions (1/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

The store MEM1 results in a TLB Miss  We simply record it
39



Reporting Exceptions (2/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3 as if nothing happened
40



Reporting Exceptions (3/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???
$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Now raise the TLB Miss exception at location 0x10000008
41



Reporting Exceptions (4/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???0xa87f b3510x1000 0008

PCExcpt.

tail

0
0

head

But also squash all instructions which followed the exception
42



Reservation Stations

 A reservation station checks that the operands are available (RAW) and that 
the Execution Unit is free (Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

43

Where do we get the 
necessary information

at decode time?!



Decoding and Dependences

When decoding an instruction, we are supposed to put, for 
each operand, either a tag or a value in the corresponding 
reservation station—but how do we know if we can read 
the register file, for instance?!

Possible situations:
 No dependence  Read the value from the RF
 Dependence from an ongoing instruction

 If the value is computed  Get the value from the ROB
 If the value is not yet computed  Get the tag from the ROB

The Reorder Buffer knows of all instructions 
not yet committed and of their destination 

registers

44



No Dependence

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Looking for $f1? No ongoing instruction will produce it, 
hence it is safe to read it from the Register File

45



0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Value in the ROB

Looking for $f2? An ongoing instruction has produced it, 
hence we should read 0x627fba5a from the ROB

46



0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Tag in the ROB

Looking for $f5? An ongoing instruction will produce it, 
hence we need to use tag MUL2 as found in the ROB

47



0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Multiple Dependences?

Looking for $f3? Two ongoing instructions produce it 
and it is the most recent one which matters (tag ALU3 here)

48



Dependences through Memory

The way we detect and resolve dependences through 
memory (a store at some address and a subsequent load 
from the same address) is the same as for registers
For every load, check the ROB:
a) If there is no store to the same address in the ROB, 

get the value from memory (i.e., from the cache)
b) If there is a store to the same address in the ROB, 

either get the value (if ready) or the tag
but there is an additional situation now

c) If there is a store to an unknown address in the ROB 
or if the address of the load is unknown, wait!

49



Load-Store Queues

 The fact that there could be a store to a yet-
unknown address in ROB the makes things harder:
 Not only loads need to wait in the memory RS for their 

addresses (= waiting for their operands, which is normal RS 
business)

 Ready loads (= with known addresses) need to keep checking 
the ROB until the address of all preceding stores is known

 In practice, this implies a strong coordination between 
the memory RS and the memory (=store) part of 
the ROB  All this is thus typically implemented in a 
Load-Store Queue (in turn, in fact, better 
implemented as individual load and store queues)

 The load queue may not be a queue, after all (see 
later)

50



Load-Store Queues

51

ROB

Mem RS
LQ SQ

ROB

Most of the Mem RS 
information and logic is now 

in the Load and Store 
Queues

Most of the ROB information 
about stores is now in the 
Store Queue, but the ROB 

still triggers when to write to 
memory



Example of Load Store Queue

52

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

from
EUs and RF

from
EUs and RF

MEMORY

Does not need to 
be a queue, in fact

Pointers to the last 
preceding stores



Load Queue Functionality

 All ready loads (= those at known addresses) are 
checked concurrently

 Each load compares its address with all preceding 
store addresses and does (approximately) the following:
 If any of the preceding stores misses the address  do nothing
 If all preceding stores have an address and there is no collision

issue the load if there are available memory ports
 If the load address equals one or more of the store addresses and if the 

last of the colliding stores has the value  memory bypass = 
load is executed and the returned value comes from the store queue

 If the load address equals one or more of the store addresses and if the 
last of the colliding stores has no value yet  do nothing (will be 
a memory bypass later)

 This behaviour is essentially that of an RS but with the 
additional issue of checking for emerging collisions in the 
store queue53



Store Queue Functionality

 Stores are executed only if 
1. The address and the data for the store are known (= standard 

RS functionality)
2. All preceding stores executed (= in-order commit as ROB)
3. The store is enabled from the ROB (= in-order commit w.r.t. 

other instructions in the ROB)
 If any of the tests fail, the store is kept waiting
 This behaviour is essentially that of an RS combined with 

the reordering of a ROB

54



Example of Load Store Queue:
Normal RS Behaviour in Load Queue

55

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD3: Unknown read address  wait



Example of Load Store Queue
Potential RAW through Memory

56

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD6: Potential RAW with stores whose address is unknown  wait



Example of Load Store Queue:
RAW through Memory

57

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD4: Known RAW at address 0x627f ba5a  wait



Example of Load Store Queue:
RAW through Memory (bypass)

58

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD1: Known RAW at address 0xa87f b351 
return 0x6666 eeaa without accessing memory



Example of Load Store Queue:
Stores Released by ROB 

59

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

0x627f ba5a 0x99ae fdda
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

Oldest store does not commit even if ready  must wait for ROB

As usual, a real 
implementation may 

be fairly different 
from this picture
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Origins of Reordering

 Robert Tomasulo in 1967 for the IBM System/360 Model 91’s 
floating point unit, but no support for precise interrupts

 Smith & Pleszkun on precise interrupts, 1988
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Second Step: 
Dynamic Scheduling

 Tangible amount of ILP now possible
What’s next?!

IF ID EX1 EX2 WB
IF ID EX1 EX2 EX3 EX4 EX5 MEM

IF ID EX1 EX2

EX2
IF ID EX1 MEM WB

IF ID EX1 MEM

Cycles

In
st

ru
ct

io
ns

1:

2:

3:

4:
5:

EX2IF ID EX16:

WB



ILP So Far…

Instructions

Cycles ?

Pipelining

Dynamic 
Scheduling

Standard
62
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Superscalar Execution

Why not more than one instruction 
beginning execution (issued) per cycle?
Key requirements are
Fetching more instruction in a cycle: no big 

difficulty provided that the instruction cache 
can sustain the bandwidth
Decide on data and control dependencies: 

dynamic scheduling already takes care of this



Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

64
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Third Step: Superscalar Execution

IF ID EX1 EX2 EX3 WB
IF ID EX1 EX2 EX3 EX4 EX5
IF ID EX1 MEM WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 EX4 EX5 WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 WB

IF ID EX1 EX2 EX3 EX4 EX5 EX6 WB

Cycles

In
st

ru
ct

io
ns

1:

2:

3:
4:

5:

6:
7:

8:

MEM



Several Steps in Exploiting ILP

Instructions

Cycles

Pipelining

Dynamic
Scheduling

Superscalar

Standard
66



Intel Nehalem and AMD Barcelona:
Now Oldish Microarchitectures

Intel Nehalem AMD Barcelona
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Intel Skylake Microarchitecture
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AMD Zen 3 Microarchitecture
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Apple Firestorm Microarchitecture
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References on ILP

 AQA 5th ed., Appendix C
 CAR, Chapter 4—Introduction
 J. E. Smith and A. R. Pleszkun, Implementation of 

Precise Interrupts in Pipelined Processors, IEEE 
Transactions on Computers, 37(5):562-73, May 1988



2
Register Renaming

(How Do I Get Rid of WAR and WAW?!…)
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Register Renaming

 Importance of removing WAR and WAW dependences 
with “close-to-ideal” instruction windows (2K entries) 
and maximum issue rate (64 per cycle)
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A Little History of (Modern) 
Renaming

Source: Sima, © IEEE 2000
First: IBM 360/91 (1967, FP partial renaming)
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Main Dimensions in Renaming 
Policies

1. Scope of register renaming
 Simple: only some classes of registers are 

renamed (e.g., integer or FP only)
2. Layout of the renamed registers
 Where are they?

3. Method of register mapping
 Allocation, tracking, and deallocation

4. Rename rate
 How many instructions can be renamed at 

once?
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Where Are the Rename Registers?

Four possibilities:
1. Merged rename and architectural RF
2. Split rename and architectural RFs
3. Renamed values in the reorder buffer
4. Renamed values in the reservation 

stations (a.k.a. shelving buffers)
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Four Possible Locations for Rename 
Registers

Source: Sima, © IEEE 2000
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Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Rename
Registers

Architectural
Registers
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Typical ROB

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC
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Tracking the Mapping: Where is 
Physically an Architectural Register?

Source: Sima, © IEEE 2000

Mapping in a
Mapping Table

Mapping in the
Rename Buffer
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MIPS R10000:
Merged RF with Mapping Table

Remark the complexity of the Mapping Table:
 4-issue processor ( 4x above scheme in parallel)
 16 parallel accesses: 16 read ports and 4 write ports!
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Possible States of each Register
in a Merged File

So
ur

ce
:S

im
a,

 ©
 IE

EE
 2

00
0



83

State Transitions in a Merged File

 Initialisation:
 First N registers are “AR”, others “Available”

1. Available  Renamed Invalid
 Instruction enters the Reservation Stations and/or the ROB: 

register allocated for the result (i.e., register uninitialised)
2. Renamed Invalid  Renamed Valid

 Instruction completes (i.e., register initialised)
3. Renamed Valid  Architectural Register

 Instruction commits (i.e., register “exists”)
4. Architectural Register  Available

 Another instruction commits to the same AR (i.e., register is 
dead)

5. Renamed Invalid and Renamed Valid  Available
 Squashing
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MIPS R10000:
32 AR, 64 PhR, Merged Register File

So
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96

Free Register Table:
Up to 32 empty PhR

Mapping Table:
fD AR  PhR

New PhR
to Hold fD

I-Queue / Resv. Station ROB

Status Table:
Invalid PhR

Previous PhR
Holding fD

fD AR
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MIPS R10000:
Information Flow

1. Available  Renamed Invalid
 Read new PhR from top of Free Register Table
 Create new mapping LogDest  Dest in the Mapping Table
 Set corresponding Busy-Bit (=invalid) in the Status Table

2. Renamed Invalid  Renamed Valid
 Write PhR Dest indicated in the I-Queue
 Reset corresponding Busy-Bit (=valid) in the Status Table
 Mark as Done in the corresponding entry in the ROB

3. Renamed Valid  Architectural Register
 Implicit (removal of historical mapping LogDest  Dest)

4. Architectural Register  Available
 Free PhR indicated by OldDest in the entry removed from the ROB

5. Renamed Invalid and Renamed Valid  Available
 Restore mapping from all squashed ROB entries (from tail to head) as 

LogDest  Dest
 Reset corresponding Busy-Bit (=valid) in the Status Table
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State Transitions Replaced by 
Copying in Stand-alone RRF

 Initialisation:
 All Rename Registers are “Available”

1. Available  Renamed Invalid
 Instruction enters the Reservation Stations and/or the ROB: 

register allocated for the result (i.e., register uninitialised)
2. Renamed Invalid  Renamed Valid

 Instruction completes (i.e., register initialised)
3. Renamed Valid  Available

 Instruction commits (i.e., register “exists”)
 Value is copied in the Architectural RF

4. Renamed Invalid and Renamed Valid  Available
 Squashing (no copy to the Architectural RF)
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State of the Rename Registers in 
the Commit Unit (ROB)

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

Renamed InvalidRenamed Valid
Available
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How Many Rename Registers?

 In-Flight instructions:

 Rename Registers:

 ROB size:

STLDEURSflightin NNNNN +++=−

LDEURSrename NNNN ++≤

flightinROB NN −≤

Note: if strictly < then structural stalls can occur
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Number of Rename Registers
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Actual Choices in Commercial 
Implementations
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High-End 
Processors

in 2009

No renaming 
only in 

UltraSparc:
Use of register 

windows made it 
very difficult to 

implement 
renaming (but 

Fujitsu eventually 
managed)

Nor in Itanium, 
of course…

Source: Microprocessor Report, © Cahners 2009
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References on Register Renaming

 AQA 5th ed., Appendix C and Chapter 3 
 PA, Sections 6.3, 6.4, and 6.5
 CAR, Chapter 5—Introduction
 D. Sima, The Design Space of Register Renaming 

Techniques, IEEE Micro, (20):5, Sept.-Oct. 2000
 K. C. Yeager, The MIPS R10000 Superscalar 

Microprocessor, IEEE Micro, 16(2):28-40, April 1996



3
Prediction and Speculation

(Don’t Know It? Don’t Wait but Guess…)
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Prediction & Speculation: The Idea

Some operation takes awfully long?
The processor needs the result to proceed?
To fetch the next instruction, one needs to know 

which one must be fetched
To perform a computation, one needs the operands

Don’t wait!!!

1. Make a guess ( Predict) and
2. Proceed tentatively ( Speculate)
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General Problems

1. How do I make a good guess?
 Either one outcome is typical and far more frequent
 Static prediction

 Or I need to remember some history
 Dynamic prediction

2. What do I do if the guess was wrong?
 Undo speculatively-executed instructions (“squash”)
 May cost nothing—e.g.,

 Squash some results
 May cost something—e.g.,

 Empty pipelines
 Restore saved state
 Execute compensation code



Prediction & Speculation

Have we already seen a form of prediction and 
speculation in this course?

Precise exceptions

Prediction: For every instruction, we have 
guessed that there will be no exception (static 
prediction)

Speculation: In case of exception we have 
used the ROB to squash all instructions after the 
faulty one raising the exception

96



Precise Exceptions (1/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

The store MEM1 results in a TLB Miss  We simply record it
97



Precise Exceptions (2/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3 as if nothing happened
98



Precise Exceptions (3/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???
$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Now raise the TLB Miss exception at location 0x10000008
99



Precise Exceptions (4/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???0xa87f b3510x1000 0008

PCExcpt.

tail

0
0

head

But also squash all instructions which followed the exception
100



After a prediction, hold every potential change in 
state of the processor (e.g., register values, 
memory writes) in a buffer

If the prediction turns out to be correct, let the 
content of the buffer affect the state (= 
COMMIT)

If the prediction turns out to be wrong, simply 
trash the content of the buffer (step 4 above)

Our ROB does just that!
…and once we have it, we can do much more with it!

A General Idea

101



Prediction & Speculation

So far:
Precise exceptions

102

What’s next?



Branch Prediction and Speculation

Prediction
Static: Maybe we can assume that every backward 

branch is part of a loop and thus usually taken
Dynamic: Maybe we can observe what happens 

during execution and learn
Speculation
In a simple pipeline we may simply fetch and decode 

instructions  easy, no state changes
In a complex OOO superscalar we may really execute 

instructions speculatively  ROB

103



F

Control Hazards

1000:

1004:

1008:

1012:

beq  $r0, $r1, loop

sub  $r2, $r0, $r1

Causality violation!
We fetch an instruction before we know which one!

time (cycles)

D E M W
F D E M W

F D E M W
F D E M W



F

Control Hazards Solved 
by Stalling the Pipeline

1000:

1004:

1008:

1012:

D E M W
F E M W

D E M W
F D E M

F F D
F

 We can stall the pipeline once it is discovered, after D, that an 
instruction was a branch

 If, for instance, the correct address of the next instruction is known 
at the end of the E stage, 2 cycles are lost every branch

F

Stalled pipeline

beq  $r0, $r1, loop

sub  $r2, $r0, $r1

After D of 1000, F of 1004 is 
invalidated because it could have 

been the wrong instruction



F

Speculative Fetch and Decode

1000:

1004:

1008:

1012:

D E M W
E M W
D E M W

D E M W

F D
F

F

beq  $r0, $r1, loop

sub  $r2, $r0, $r1

F1000:

1004:

1008:

loop:

D E M W

D E M W

F D
F

F

beq  $r0, $r1, loop

sub  $r2, $r0, $r1

Speculative F and D, wrongly predicted and thus squashed (simple invalidation in the pipeline)

Speculative F and D, correctly predicted



Branches in the ROB

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

BR3 ???
$f5MUL2 ???

0x1111 ab08

0x1111 ab08

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

Predicted branches inserted in the ROB with predicted target
107

Actual target is 
initially unknown



Branches without Outcome 
Block the ROB

0
0
0
0
0

0

Register Address ValueTag

BR3 ???
$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

A predicted branch whose outcome is unknown cannot be committed
108



Correctly Predicted Branches
Are Ignored

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1111 ab08

$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

BR3 can commit (= do nothing and remove from ROB)
109
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Mispredicted Branches 
Trigger a Squash

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1000 000c0x1111 ab080x1000 0008

PCExcpt.

tail

0
0

head

BR3 triggers a squash and causes fetch to restart at 0x1000000c
110
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Branch Prediction and Speculation

Prediction
Static: Maybe we can assume that every backward 

branch is part of a loop and thus usually taken
Dynamic: Maybe we can observe what happens 

during execution and learn
Speculation
In a simple pipeline we may simply fetch and decode 

instructions  easy, no state changes
In a complex OOO superscalar we may really execute 

instructions speculatively  ROB

111
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Branch Prediction

Branch
Predictor

Logic

Branch outcome and 
additional info

Current PC

Predicted direction
(Taken/Not Taken)

Predicted target 
address
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Branch Target Buffers

PC

0xa123 fee4
…
…
…

…
…

…

031

One needs to know if a 
just fetched and yet 

undecoded instruction 
is a branch and 

what is the destination 
(computed branch, 
relative address, 

return, etc.)

0x1234 5678
0x1235 ef5a

…
…

…
…

…

Target AddressBranch Address

CAM
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More Complex But Cheaper
Branch Target Buffers

0xa123 fee4
…
…

…
…

…
0x1234 56
0x1235 ef

…

…
…

…

Target Addr.Tag (31..8)

PC (Branch Address)
07831

0x7834 3847
…
…

…
…

…

0x5678 23
0x1235 78

…

…
…

…

Target Addr.Tag (31..8)
0000 0000:

0000 0001:

0000 0011:

1111 1110:

1111 1111:

= Etc.

Typical Cache/TLB
organisation
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Which Strategy to Predict?

 Static predictions: ignore history
1. Never-taken or always-taken
2. Always-taken-backward (e.g., loops)
3. Compiler-specified, etc.
 Still a form of dynamic control speculation, 

because the squashing process is done in 
hardware

 Dynamic prediction: learn from history
 Record how often a branch was taken in the 

past
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Which Strategy to Predict 
Dynamically?

1. Same outcome as last time
 Keep one bit of history per recently visited branches

 Needs an associative memory  expensive
 Keep one bit of history per hashed address

 Needs only a RAM  inexpensive
 Different branches alias  mistakes, but we are only guessing, 

anyway…

2. Same outcome as last few times (inertia)
 Keep a two-bit saturating history counter per hashed 

address; use sign as a predictor
 Tuned to for loops: one misprediction is normal (last iteration) 

and should not modify the successive prediction (first iteration of 
a new execution)
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Branch History Table

PC (Branch Address)

0
1
1
0

1
0

…

07831

not taken

taken

taken

not taken

taken

not taken

OR

01
10
11
01

10
00

…

not taken

taken

taken

not taken

taken

not taken

0000 0000:

0000 0001:

0000 0010:

0000 0011:

1111 1110:

1111 1111:

One-bit Prediction
Two-bit Prediction
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Branch History Table

PC (Branch Address)

0
1
1
0

1
0

…

07831

not taken

taken

taken

not taken

taken

not taken

OR

01
10
11
01

10
00

…

not taken

taken

taken

not taken

taken

not taken

0000 0000:

0000 0001:

0000 0010:

0000 0011:

1111 1110:

1111 1111:

One-bit Prediction
Two-bit Prediction

Isn’t there something 
missing here?!

Think of caches or 
even of BTBs…

?!
?!

Speculation brings us in a whole new world
We do not care to be always right

but only to be right most of the time!



One- vs. Two-Bit 
Prediction Schemes

 Simplest one-bit predictor: “do the same as last time”

 Two-bit predictor (saturating counter): adding some “inertia” or 
“take some time to change your mind”

119

Not takenTaken

Taken
Taken

Not taken
Not taken

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

“Strong” Prediction“Weak” Prediction

Why?!

Actual outcomes

Predictions



One- vs. Two-bit 
Prediction Schemes and Loops

 How many mispredictions for loop2 every iteration of loop1?

120

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

loop1: for (i = 0; i < ROW; i++) {

…do something…

loop2: for (j = 0; j < COL; j++) {

…do something…

}
}



Exotic Prediction Schemes

 Simple two-bit saturating counter

 Modified two bit saturating counter 
Two mispredictions  Strong reversal (e.g., UltraSPARC-I)

121

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

Not takenTaken

Taken

Not taken

Taken

Not takenNot takenNot taken

Taken

TakenTaken

Not taken
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Prediction Accuracy
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Exploiting Correlation 
(two-level or gselect Predictors)

Exploit correlation:
(m,n) Branch Predictor Buffer
A global m-bit predictor uses the 

outcome of the last two branches to 
select one among four different 

predictors

Branch History Register (BHR): 
m-bit shift register

Pattern History Table (PHT)
2m standard n-bit predictors

Branch
address

4 bits

Branch 
prediction

Branch
outcomes

2 bits
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Exploiting Correlation 
(two-level or gselect Predictors)

Branch
outcomes

Branch 
prediction

Branch
address

4 bits

2 bits

Branch
address

4 bits

Branch 
prediction

Branch
outcomes

2 bits



McFarling gshare Predictor

125

Branch 
prediction

Branch
outcomes

Branch
address

4 bits

2 bits

Branch 
prediction

Branch
address

6 bits

6 bits

Branch
outcomes

6 bits

gselect
predictor

gshare
predictor

replace concatenation
with a better hash 

function



The Sky (or the Architects’ 
Ingenuity) Is the Limit…

Tournament predictors
 Combine several predictors (typically local, such as a 

simple 2-bit predictor, with global, such as a gshare
predictor)

 Use a selector to guess which would be the best 
predictor across the set

 In case of misprediction it is not self-evident how to 
update the whole (update the predictors and/or 
update the selector?!)…

Tagged hybrid predictors
…

126



127

Return Address Stack

Special elementary case of branch prediction:
Small stack (e.g., 8-16 values)
Each call (CALL, JAL, etc.) pushes a value
Each return (RET, JP $ra, etc.) pops a predicted 

return address
Functionally identical to the “real” stack but 

avoids any SP manipulation, memory accesses, 
argument bypassing, etc.
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Misprediction Has High Cost  Lots 
of Efforts in Improving Accuracy

Pipelines become more and more deep (e.g., up 
to 22-24 cycles in Pentium 4)

Issue width grows (typically 3-8)
Large number of in-flight instructions (hundreds)
Many predicted branches in-flight at once
Probability of executing speculatively something 

useful reduces quickly

∏=
predall

i
itot pp

_



Apple Firestorm Microarchitecture
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Prediction & Speculation

So far:
Precise exceptions
Branches

130

What’s next?



Reminder:
Dependences through Memory

131

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD6: Potential RAW with stores whose address is unknown  wait

Will these addresses 
ever be equal to 
0x10ef dd14?



Memory Dependence
Prediction and Speculation

Prediction
We can optimistically assume that there is no 

dependence (it is the only assumption that makes 
us gain time and the opposite assumption never leads 
to a functional mistake…)

Speculation
If there was a dependence, every data dependent 

instruction should be squashed; independent 
instructions were actually correctly executed

If we accept to squash all following instructions, this 
situation is not qualitatively different from what we 
have seen for other cases  ROB

132



Alias Prediction

 One could certainly do better than simply assuming that any 
potential RAW through memory is not a RAW (= simple static 
dependence prediction)

 The goal is to reduce the probability of squashing and replaying (if 
squashing costed nothing, the static prediction would be ok, but 
squashing almost invariably has a cost—and definitely in terms of 
energy)

 Essentially one could build dynamical predictors similar in spirit 
to branch predictors (the intuition is that dependences are program 
specific but often stable during program execution)  learn from 
history and remember what happens on previous visits of a load

 In fact, one could even predict a specific dependence (alias 
prediction—that is, on which store a given load depends) and use 
it to bypass memory before addresses are known

133



Prediction & Speculation

So far:
Precise exceptions
Branches
Dependences in memory

134

What’s next?



Predicting the Next Miss?
Prefetching I and D into the Cache

Caches partially reduce memory latency, OOO 
execution partially hides memory latency

What to do if there is a significant # of misses?
Misses in all cache levels need hundred(s) of cycles
OOO may not be enough to hide this

Idea
Fetch data into the cache 

ahead of processor demanding it

135

Nonbinding prefetch



Prefetching
Prediction and Speculation

Prediction
What and when to get from memory
As usual, exploit typical behavior (e.g., programs 

are sequences of instructions) and learn from 
execution history (e.g., discover access stride)

Speculation
Since we are putting data in the cache (which is not 

architecturally visible), nothing to do to rollback
Still, prefetching has a cost (besides energy, it 

consumes memory bandwidth) and could be 
damaging (leads to eviction of useful stuff)
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Prefetchers and Memory Hierarchy

No influence on the 
processor state 
prefetching is this 

not so much a 
business of the 
core but of the 

caches
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Prefetching
Prediction and Speculation

Prediction
What and when to get from memory
As usual, exploit typical behavior (e.g., programs 

are sequences of instructions) and learn from 
execution history (e.g., discover access stride)

Speculation
Since we are putting data in the cache (which is not 

architecturally visible), nothing to do to rollback
Still, prefetching has a cost (besides energy, it 

consumes memory bandwidth) and could be 
damaging (leads to eviction of useful stuff)
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Prefetching
Coverage and Accuracy

Coverage: How many misses prefetching 
removes?

Accuracy: How many prefetched cache lines 
are useful over all prefetched lines?

Sort of a trade-off: 
 prefetching very aggressively improves coverage 

but reduces accuracy  pollutes the cache
 prefetching conservatively may improve accuracy 

but reduces coverage  little benefit
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Next-Line Prefetching

Simplest intuition:
If cache line X is a miss, load X but also X+1

Easiest scheme, no “intelligence”
How to implement it? Lookahead?
Do not load X+1 immediately but wait until the 

processor asks for an instruction some “fetch-ahead 
distance” from the end of the line
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word

Cache line (instruction cache)

Fetched instruction Fetch-ahead distance

What?

When?

Similar to huge 
cache lines?



Next-N-Line (or Stream) Prefetching

Is the lookahead inside a cache line enough to 
hide the latency of a miss?

The natural extension is, on a request for cache 
line X, to prefetch not only X+1 but also X+2, 
X+3,… X+N

N is a critical parameter:
Too small  poor coverage
Too large  poor accuracy
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Stride Prefetching

 For instructions or elements of matrix accessed row-
wise, the sequence X, X+1, X+2, etc. is appropriate

 But what about other typical cases?

 Natural extension: distance (stride) should be >1
 On a request for X, prefetch X+S, X+2S,… X+N∙S
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accessing a matrix column-wise
accessing a field in 
an array of struct



Stride Prefetching

 Usually takes a few misses to detect and build 
confidence in a constant stride:
 X  Compulsory miss
 X+S  Compulsory miss, S hypothesis
 X+2S  Compulsory miss, S confirmed
 X+3S  Compulsory miss, S confirmed again, prefetch
 X+4S  Hit, S confirmed again, prefetch
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Stream Buffers

 There may be various streams mixing (e.g., multiple arrays, etc.)
 Aggressive prefetching of multiple streams leads to cache pollution

 Implement multiple Next-N-Line or Stream prefetchers
 Place the prefetched lines in FIFO buffers instead of the cache
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Stream Buffers

On a miss, check the head of all stream 
buffers:
If match (i.e., found the desired cache line), 

pop the desired entry from the buffer head, 
prefetch the Nth cache line of the series, and 
place it at the buffer tail
If no match, evict one of the stream 

prefetchers (e.g., least successful or least 
recently used) and try to build a new stream
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Prediction & Speculation

So far:
Precise exceptions
Branches
Dependences in memory
Prefetching

146

What’s next?
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Dynamic Data Value Prediction

Examples:
Source Operand Value Prediction: predict 

quasi-constant input operands
 Many constant values during program execution
 History table recording last value

Value Stride Prediction: predict constant 
increments across input operands
 History table recording stride between last two 

values
Load Addresses and Load Values
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Speculation Is Not Necessarily a 
Run-Time Concept

Dynamic: in hardware, no interaction 
whatsoever from the compiler
Binary code is unmodified

Static: in software, planned beforehand 
by the compiler
Binary code is written in such a way as to do 

speculation (with or without some hardware 
support in the ISA)



149

Static Control Speculation
Example

We need to compute:
if (A==0) A=B; else A=A+4;

In assembly:
LW R1, 0(R3) ; load A
BNEZ R1, L1 ; test A, possibly skip then
LW R1, 0(R2) ; ‘then’ clause: load B
J L2 ; skip else

L1: ADD R1, R1, 4 ; ‘else’ clause: compute A+4
L2: SW 0(R3), R1 ; store new A

If we know that the ‘then’ clause is almost 
always executed, can we optimise this code?
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Static Control Speculation
Example

We could speculatively start earlier to load B into 
another register and, if needed, squash the 
value with the right one

In assembly:
LW R1, 0(R3) ; load A
LW R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A

Advantages: now we load B while the test is 
performed ( in parallel)

Any problem? As usual: exceptions…
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Exceptions and 
Static Speculation

Some ways to handle exceptions in 
(software) speculative execution:
Static renaming: Hardware and operating 

systems cooperatively ignore exceptions
Poison bits: Mark results as speculative and 

delay exception at first use
Speculative instructions: Mark instruction as 

speculative and do not commit the result until 
speculation is solved
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Static Renaming and 
Hardware-Software Cooperation

 Back to our example:
LW R1, 0(R3) ; load A
LW R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A

 OS “helps” with two policies:
 Nonterminating exceptions (e.g., Page Fault): resume 

independently from speculativeness  performance penalty, but 
execution ok

 Terminating exceptions (e.g., Divide by Zero): ignore and return 
an undefined value  if it was speculated, it will be unused

 Problem: nonspeculative terminating exceptions?
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Static Renaming and Poison Bits

 Special marker for speculative instructions:
LW R1, 0(R3) ; load A
LW* R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A; report exceptions

 The processor knows the load is speculative and turns 
on R14’s Poison Bit if it raises a terminating exception, 
and suppresses the exception

 The add, if executed, resets the R14’s Poison Bit
When R14 is used, a deferred terminal exception is 

raised if its Poison Bit is set
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Example:
Speculative Loads in Itanium (I)

 Goal: move loads as early as possible, even speculatively before 
preceding branches (i.e., without being sure they are really needed)

<some code>
(p1) br.cond somewhere
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated
// if old value r1 not needed

<some code> // <- neither here nor
(p1) br.cond somewhere   //    in “somewhere”
// ------ barrier
<some code using r1>     // but…

Exceptions?
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Example:
Speculative Loads in Itanium (II)

 Speculative loads and deferred exceptions to explicit compiler-
generated fix-up code

ld.s r1 = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations, which also
// defer exceptions

(p1) br.cond somewhere
// ------ barrier
<some more code using r1>
chk.s r1, fix_code_r1 // call exception handler if needed

// to fix-up execution
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Static Data Dependence 
Speculation (I)

 Potential RAW dependencies through memory are to be 
conservatively assumed as real dependencies  Loss of useful 
reordering possibilities

 Goal: move loads as early as possible, even speculatively before 
preceding stores (i.e., without being sure that the value is right)

<some code>
st [r3] = r4
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated…
<some code>
st [r3] = r4 // …but if r2==r3, r1 is WRONG!
// ------ barrier
<some code using r1>

NO!
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Static Data Dependence 
Speculation (II)

 Speculative Loads get executed but mark the destination register as 
“speculatively” loaded and track subsequent stores for a conflict

 Important advantage because loads (slow operations) can now be 
started earlier

ld.a r1 = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations

st [r3] = r4             // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads

// ------ barrier
<some more code using r1>
chk.a r1, fix_code_r1 // if violated RAW dependence, call

// special fix-up routine
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Predicated (= Guarded) Execution

 A special form of static control speculation?
“I cannot make a good prediction? I will avoid gambling 

and will do both”

 A bit more than that: removes control flow change 
altogether (see lectures on statically scheduled 
processors) 

 Not always a good idea: compiler trade-off
 (Almost) free if one uses execution units which where not used 

otherwise (e.g., because of limited ILP)
 Not free at all in the general case: more than needed is always 

executed
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Types of Prediction & Speculation

Dynamic (by the hardware) Static (by the compiler)

Exceptions
OOO execution and reordering
Imprecise exceptions in DBT 
(e.g., Transmeta Crusoe)

—

Control Branch Prediction

Trace Scheduling
Hyperblocks
Predication
Speculative Loads (e.g., Itanium)

Data 
Availability Virtual memory —

Data 
Dependence Load/Store Queues Advanced Loads (e.g., Itanium)

Data Value — Dynamic compilers (e.g., DyC, 
Calpa)

Not all of these are traditionally called “speculation”!
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References on Prediction & 
Speculation

 AQA 5th ed., Chapter 3 and Appendix H
 PA, Sections 4.3 and 5.3
 J. E. Smith, A Study of Branch Prediction Strategies, 

Eight International Symposium on Computer Architecture 
(ISCA), 135-48, May 1981



4
Simultaneous Multithreading

(How do I fill my issue slots?!…)
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Sources of Parallelism

 Bit-level
 Wider processor datapaths (8163264…)

 Word-level (SIMD)
 Vector processors
 Multimedia instruction sets (Intel’s MMX and SSE, Sun’s VIS, etc.)

 Instruction-level
 Pipelining
 Superscalar
 VLIW and EPIC

 Task- and Application-levels…
 Explicit parallel programming
 Multiple threads
 Multiple applications…
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Sources of Unused Issue Slots
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Horizontal and Vertical Waste
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Multithreading: 
The Idea
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Rather than enlarging the depth of 
the instruction window (more 

speculation with lowering 
confidence!), enlarge its “width”

 fetch from multiple threads!
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Basic Needs of a 
Multithreaded Processor

Processor must be aware of several 
independent states, one per each thread:
Program Counter
Register File (and Flags)
(Memory)

Either multiple resources in the processor 
or a fast way to switch across states
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Thread Scheduling

When one switches thread?
Which thread will be run next?

Simple interleaving options:
Cycle-by-cycle multithreading
 Round-robin selection between a set of threads

Block multithreading
 Keep executing a thread until something happens

Long latency instruction found
Some indication of scheduling difficulties
Maximum number of cycles per thread executed
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Cycle-by-cycle Interleaving
(or Fine-Grain) Multithreading
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Block Interleaving (or Coarse-Grain) 
Multithreading
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Fundamental Requirement

Key issue in general-purpose processors 
which has prevented for many years 
multithreaded techniques to become 
commercially relevant

It is not acceptable that single-thread 
performance goes significantly down 

or at all
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Problems of Cycle-by-Cycle 
Multithreading

 Null time to switch context 
 Multiple Register Files

 No need for forwarding paths if threads supported are 
more than pipeline depth!
 Simple(r) hardware

 Fills well short vertical waste (other threads hide 
latencies ~ no. of threads)

 Fills much less well long vertical waste (the thread is 
rescheduled no matter what)

 Does not reduce significantly horizontal waste (per 
thread, the instruction window is not much different…)

 Significant deterioration of single thread job
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Block Interleaving Techniques

Block Interleaving

Static Dynamic

Explicit Switch Implicit Switch
Switch-on-Load
Switch-on-Store

Switch-on-Branch

Explicit Switch
Conditional-Switch

Implicit Switch
Switch-on-Miss
Switch-on-Use

(a.k.a. Lazy-Switch-on-Miss)
Switch-on-Signal

(interrupt, trap,…)
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Problems of Block Multithreading

Scheduling of threads not self-evident:
What happens of thread #2 if thread #1 executes 

perfectly well and leaves no gap?
Explicit techniques require ISA modifications  Bad…

More time allowable for context switch
Fills very well long vertical waste (other threads 

come in)
Fills poorly short vertical waste (if not sufficient 

to switch context)
Does not reduce almost at all horizontal waste
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Several Simple Scheduling 
Possibilities

Prioritised scheduling?
Thread #0 schedules freely
Thread #1 is allowed to use #0 empty slots
Thread #2 is allowed to use #0 and #1 

empty slots, etc.
Fair scheduling?
All threads compete for resources
If several threads want the same resource, 

round-robin assignment



182

Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

PC

IQ
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Reorder Buffer

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

Register Renaming
(between fetch/decode and commit)
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What Must Be Added to a 
Superscalar to Achieve SMT?

 Multiple program counters (= threads) and a 
policy for the instruction fetch unit(s) to decide 
which thread(s) to fetch

 Multiple or larger register file(s) with at least as 
many registers as logical registers for all threads

 Multiple instruction retirement (e.g., per thread 
squashing)
 No changes needed in the execution path

And also:
 Thread-aware branch predictors (BTBs, etc.) 
 Per-thread Return Address Stacks

F/
D

Co
m

m
it
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SMT Processor as a Natural 
Extension of a Superscalar

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

PCPCPCPC

IQIQIQIQ

Register File(s)



186

Reorder Buffer Remembers the 
Thread of Origin

 Some changes to the reorder buffer in the Commit Unit—e.g.:

to MEM
and RF

from
F&D Unit

0
1
1

1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???

$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

1 MUL30x2001 1234

2

2

2

1

Thread

$f3 ???

Architectural Register Identifier:
Reg # + Thread #
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Reservation Stations

 Reservation stations do not need to know which thread an 
instruction belongs to

 Remember: operand sources are renamed—physical regs, tags, etc.

addd – MUL3 ???1
subd ALU1 – ??? 0xffff fee11

0

Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3:

0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

Thread
#2?!

Thread
#1?!
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Does It Work?!
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Fetch+Decode throughput = 8 IPC
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Main Results on Implementability
SMT vs. Superscalar

From [TullsenJun96]:
Instruction scheduling not more complex
Register File datapaths not more complex (but 

much larger register file!)
Instruction Fetch Throughput is attainable even 

without more fetch bandwidth
Unmodified cache and branch predictors are 

appropropriate also for SMT
SMT achieves better results than aggressive 

superscalar
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Where to Fetch?

Static solutions: Round-robin
Each cycle 8 instructions from 1 thread
Each cycle 4 instructions from 2 threads, 2 from 4,…
Each cycle 8 instructions from 2 threads, and forward 

as many as possible from #1 then when long latency 
instruction in #1 pick rest from #2

Dynamic solutions: Check execution queues!
Favour threads with minimal # of in-flight branches
Favour threads with minimal # of outstanding misses
Favour threads with minimal # of in-flight 

instructions
Favour threads with instructions far from queue head
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What to Issue?

 Not exactly the same as in superscalars…
 In superscalar: oldest is the best (least speculation, more dependent 

ones waiting, etc.)
 In SMT not so clear: branch-speculation level and optimism (cache-hit 

speculation) vary across threads
 One can think of many selection strategies:

 Oldest first
 Cache-hit speculated last
 Branch speculated last
 Branches first…

 Important result: doesn’t matter too much!

 Issue Logic (critical in superscalars) can be left alone
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Importance of Accurate Branch 
Prediction in SMT vs. Superscalar

Reduce the impact of Branch Prediction was one 
of the qualitative initial motivations

Results from [TullsenJun96]:
Perfect branch prediction advantage

 25% at 1 thread
 15% at 4 threads
 9% at 8 threads

Losses due to suppression of speculative execution
 -7% at 8 threads
 -38% at 1 thread ( speculation was a good idea…)
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Bottlenecks
Sources of Unused Issue Slots

 Completion queue not very relevant (remember: this is out of the 
execution path…)

 Rename register count important
 Most critical: number of register writeback ports

SMT for utilisation rate (EUs) not bandwidth!…
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Bottlenecks

 Fetch and memory throughput 
are still bottlenecks
 Fetch: branches, etc.
 Memory not addressed

 Performance vs. # of rename 
registers (8T) in addition to 
the architectural ones
 Infinite: +2%
 100: ref.
 90: -1%
 80 -3%
 70 -6%

 Register file access time likely 
limit to # of threads IPC vs. # threads

200 physical registers
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Performance (IPC) per Unit Cost

 Superscalars are cheap only for relatively small issue bandwidth, 
then quickly down

 SMT improves significantly the picture already with 2 threads and 
maximum moves to larger issue bandwidths with more threads
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Introduction of SMT 
in Commercial Processors

Compaq Alpha 21464 (EV8)
4T SMT
Project killed June 2001

Intel Pentium IV (Xeon)
2T SMT
Availability since 2002 

(already there before, but not enabled)
10-30% gains expected

SUN Ultra III
2-core CMP, 4T SMT
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Intel SMT: Xeon Hyper-Threading
Pipeline

Front-end
(TC hit)

OOO
Execution

or
(TC miss)

duplicated
resources

freely shared
resources split

resources
time-shared
resources
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Intel SMT: Xeon Hyper-Threading
Switching Off Threads

What happens when there is only one thread? What 
does the OS when there is nothing to do? Ahem…
 Four modes: Low-power, ST0, ST1, and MT

Low-Power Mode
Halt0

Halt1

Int1
Int0 Halt1

Halt0

Int0
Int1
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Intel SMT: Xeon Hyper-Threading
Goals and Results

 Minimum additional cost: SMT = approx. 5% area
 No impact on single-thread performance

 Recombine partitioned resources
 Fair behaviour with 2 threads
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And Now, What’s Next?

Key ingredients for success so far:
Maximise compatibility, no info from programmers 

beyond straight sequential code and coarse threads
Aggressive prediction and speculation of anything 

predictable
Use irregular, fine-grained parallelism (ILP): it is 

“easier” to extract, can be done at runtime,…
Problems:
Branch prediction accuracy hard to improve
Hard to exploit ILP any further within a thread
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