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ILP? The Traditional Way

(Let’s Make It Fast!)




Speed: Main Goal in General

Purpose Computer Architecture
e EE— ey

 Reduce delay per gate
O Improve architecture

- Technology
- Parallelism
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Clock Rate

Does Not Grow Much (Anymore!)
e
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Sources of Parallelism

 Bit-level
» Wider processor datapaths (8>16>32->64...)
 Word-level (SIMD)
%+ Vector processors
% Multimedia instruction sets (Intel's MMX and SSE, Sun’s VIS, etc.)
0 Instruction-level
< Pipelining | — Th!s lesson: .
< Superscalar ILP = Instruction Level Parallelism
< VLIW and EPIC |
O Task- and Application-levels...
% Explicit parallel programming
% Multiple threads
%+ Multiple applications...




Starting Point (Programmer Model)
e EE— ey

JdSequential multicycle processor

1: Cycles

y Instructions




ILP?

l CycIe:s
Instructions

Py

1 1
Standard



First Step:
Pipelining

|

Instructions

IF | ID | EX |MEM] WB Cycles
2| 1F | 1D EX |[MEM[ WB
3| 1F 1D EX |MEM[ WB
4| 1F 1D EX |MEM| WB
| IF | 1D | EX

dSimplest form of Instruction Level
Parallelism (ILP): Several instructions are
being executed at once



Simple Pipeline

" M1

M2
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Simple Pipelining
S EEE— s
Scope for parallelism is limited:

- Control hazards limit the usability of the pipeline
% Must squash fetched and decoded instruction following a branch

] Data hazards limit the usability of the pipeline

< Whenever the next instruction cannot be executed, the pipeline
is stalled and no new useful work is done until the “problem” is
solved (e.g., cache miss)

- Rigid sequencing

% Special “slots” for everything even if sometimes useless (e.q.,
MEM before WB)

% Every instruction must be coerced to the same framework
% Structural hazards avoided “by construction”



Simple Pipeline with Forwarding

11

M2




ILP So Far...

l CycIe:s
Instructions

1 1
Standard

12

Pipe

ining
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Dynamic Scheduling: The Idea
 — o

J Extend the scope to extract parallelism:

divd $f0\§f2, Sf4
addd $£f10, $£f0, $f8
subd $fl2, $£8, $f14

dWhy not to execute subd while addd waits for
the result of divd?

JRelax a fundamental rule: instructions can be
executed out of program order! (but the
result must still be correct...)
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Break the Rigidity of the Basic
Pipelining
e

- Continue fetching and decoding even and especially
if one cannot execute previous instructions

] Keep writeback waiting if there is a structural hazard,
without slowing down execution

Solution:

1 Split the tasks in independent units/pipelines
% Fetch and decode

«» Execute
+» Writeback

 Clearly, instructions will now produce results out-of-
order (0O00)
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Dynamically Scheduled Processor
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Problems to Solve
I EEEEEII———————.

JStructural Hazards

% Are the required resources available?

“*New problem: previously handled by rigid pipeline
JRAW Data Hazards

“*Are the operands ready to start execution?

% Old problem

JWAR and WAW Data Hazards

< The new data overwrite something which is still
required?

“*WAW is a completely new problem—impossible
before; WAR often cannot occur
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Reservation Stations

A reservation station checks that the operands are available (RAW) and that
the Execution Unit is free (Structural Hazard), then starts execution

from from
F&D Unit v v v v v EUs and RF
Op Tagl Tag2 Argl Arg2
ALU1:
ALU2: [ ] [subd| ALU3 — ?227? Oxffff feel
ALU3: | 1 |addd —_ MUL3 | 0xa87f b351 2972
\ 4 i

v

ALU

vy
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Reservation Stations

Fetch&Decode Unit and Register File

(1) Fetched operation descriptions and All Execution Units
(2a) known operands (from RF) (1) Tags of the executed operations
or (2b) source-operation tags and (2) corresponding results
Reservation
Station

'

Dependent Execution Unit
(1) Description of operations ready to execute

with (2) corresponding tags and (3) operands
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Problems to Solve
I EEEEEII———————.

JStructural Hazards

% Are the required resources available?

“*New problem: previously handled by rigid pipeline
JRAW Data Hazards

“*Are the operands ready to start execution?

% Old problem

JWAR and WAW Data Hazards

% The new data overwrite something which is still
required?

“*WAW is a completely new problem—impossible
before; WAR often cannot occur



WAR and WAW Data Dependences
S EEE— s

divd $FO, S$f1, S$f£2
addd $£3, $£f0, $f4
subd $f4, $£5, $£6
adddi $£0, $£5, 10

Jaddd has a RAW dependence on divd
dsubd has a \WAR dependence on addd
Jadddi has a dependence on divd

20
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In-order Completion

A Simple pipelines have no WAR and WAW
hazards by construction

divd $£f0,$£f1,$£2
addd; $£3,$£f0,5£4

subd| $£f4,5£f5,5£f6

adddi $£0,$£5,10

IF | ID |EX1|EX2|EX3|EX4|EX5MEM| WB
IF ID- EX [MEM| WB
IF ID | EX MEM WB
IF | ID | EX MEM| WB
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Out-of-order Completion

dDynamic pipelines may create WAW hazards

divd $£0,$f1,$£2

addd $£3,$f0,5f4

subd $f4,$£f5,5£f6

adddi $£0,$£5,10

IF | ID [EX1|EX2]|EX3|EX4|EX5|WB
IF ID~ EX | WB
IF | ID | EX | WB
IF | ID | EX

WB
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Register Renaming
B
JWAW and WAR dependences are also called
name dependences: they do not carry a value
between to instructions

1 Often created by compilers to reuse the same
registers

JCan be removed by avoiding the use of the
same "name” - rename the destination
register whenever a new value is created

1 Both the compiler (statically) and the processor
(dynamically) can do that
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Register Renaming

divd

addd

subd

adddi

$£O0, Sf1, Sf£2

$f3;_iig;‘iﬁ4

Sf4, $f5, $f6

$£f0, $f4, 10

divd SfO0, S$f1, $£f2
addd Sf3, $£f0, $f4
subd Sf4b, $£5, $£f6

adddi $Sf0b, $f4b, 10
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Reservation Stations
I EEEEEII———————.

dUnavailable operands are identified by the name
of the reservation station in charge of the
originating instruction

dImplicit register renaming, thus removing
WAR and WAW hazards

JNew results are seen at their inputs through
special result bus(es)

JWriteback into the registers can be done in-
order or out-of-order



Dynamically Scheduled Processor
e

Instruction
Fetch & Decode
Unit

v v A \ 4

Reservation‘ Reservation‘ Reservation‘ Resen/ation‘

Stn. Stn. Stn. Stn.
Register File
. Branch Load/Store
ALU FP Unit Unit Unit
Commit
Unit

26
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Out-of-order Commitment and

Exceptions
e EE— ey

J Exception handlers should know exactly where a
problem has occurred, especially for
nonterminating exceptions (e.g., page fault)
so that they handle the event and resume
exactly where the exception occurred

1 Of course, one assumes that everything before
the faulty instruction was executed and
everything after was not

dWith OO0 dynamic execution it might no longer
be true...



A Problem with Exceptions...
e EE— ey

- - Precise
1 Precise exceptions ndi sta, St2, OxEf
% Reordering at commit; user aggi ztg, :tg gxff
. . . addi vO, $t5,
view is that of a fully in- cr1 St2. St2. 8
order processor > 1w $t3, 8(5t6)
- - andi $td, $t3, 3
- Imprecise exceptions addi $t0, $t0, 4
< No reordering; out-of-order addi vt1, i, 4
completion visible to the Imprecise
user andi S$td, $t2, Oxff
andi $t5, $t4, Oxff
% The OS/programmer must addi $v0, $t5, 1
be aware of the problem srl st2, $t2, 8
. . 2 lw $t3, 8($t6)
and take appropriate action andi std, $t3, 3
(e.g., execute again the addi $t0, $t0, 4
complete subroutine where\ f addi vtl, 1, 4

the pr0b|em Occurred) Generally unacceptable in

contemporary systems
(e.g., virtual memory, I/O
interrupts, unsupported
28 instructions)
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Reordering
 — o

J Fundamental observation: a processor can
do whatever it wants provided that it gives the
appearance of sequential execution (i.e., the
architectural machine state is updated in
program order)

A New phase: COMMIT or RETIRE or GRADUATE
(besides the usual F, D, E, W)

AThis observation is fundamental because it
allows many techniques (precise interrupts,
speculation, multithreading, etc.)




Reordering Instructions

at Writeback
I EEEEEII———————.
] Needs a reorder buffer in the Commit Unit

from
F&D Unit I § I 1 |
Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 Sf3 0x627f baba
1 [0x1000 0008 | MEM1 Oxa87f b351 2272
0 | 0x1000 000c| MUL2 | $£5 2722
S I Wy W
Was there an
exception? The “external” and “internal”  The destination of the result: The result,

30

identifiers of the instruction

register or memory address

once available

from EUs

head to MEM

and RF
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Reorder Buffer

Fetch&Decode Unit

(1) Fetched-operation tags in original All Execution Units
order, (2) destination register or (1) Tags of the executed operations
address, and (3) PC and (2) corresponding results
Commit Unit

(Reorder Buffer)

'

Register File and Memory
For each instruction, in the original fetch order,
(1) destination register or address and (2) value to write




Dynamically Scheduled Processor

Instruction Computation advances
Fetch & Decode independently from machine
Unit state updates
Reservation | | Reservation | | Reservation | | Reservation
Stn. Stn. Stn. Stn.
Register File
. Branch Load/Store
ALU FP Unit Unit Unit
A 4 Machine state
is updated in
Commit order
Unit / \

32
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Problems to Solve
I EEEEEII———————.

JStructural Hazards

% Are the required resources available?

“*New problem: previously handled by rigid pipeline
JRAW Data Hazards

“*Are the operands ready to start execution?

% Old problem

JWAR and WAW Data Hazards

< The new data overwrite something which is still
required?

“*WAW is a completely new problem—impossible
before; WAR often cannot occur
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Committing Instructions (1/4)

tail
—

Excpt. PC Tag Register Address Value
0
0
0 | 0x1000 0004 S$£3 0x627f ba5a
0 [0x1000 0008 | MEM1 0xa87f b351 ?22?
0 [ 0x1000 000c| MUL2 | $£5 ?2?2?
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa 2?7?
0

Write 0x627£fbab5a to register $£3

head
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Committing Instructions (2/4)

tail
—

Excpt. PC Tag Register Address Value
0
0
0
0 [0x1000 0008 | MEM1 0xa87f b351 ?22?
0 [ 0x1000 000c| MUL2 | $£5 ?2?2?
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa ???
0

Wait until the oldest instruction has its result

head
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Committing Instructions (3/4)

tail

Excpt. PC Tag Register Address Value
0
0
0
O [0x1000 0008 Oxa87f b351 | 0x98cd 76a2
O [ 0x1000 000c $£5 0x7677 abcd
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa ???
0

Write 0x98cd76a2 to memory location 0xa87£b351

head
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Committing Instructions (4/4)

tail

Excpt. PC Tag Register Address Value
0
0
0
0
O [ 0x1000 000c $£5 0x7677 abcd
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa ???
0

Write 0xa2cd374f£ to register $£5

head
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Reordering and Precise Exceptions
e

How does this help with exceptions?

dWhen a synchronous exception happens, we do
not report it but we mark the entry
corresponding to the instruction which caused
the exception in the ROB

JWhen we would be ready to commit the
instruction, we raise the exception instead

(1We also trash the content of the ROB and of all
RSs
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Reporting Exceptions (1/4)

Excpt. PC Tag Register Address Value
0
0
0x1000 0004 S£3 0X627f baSa |— =%
1 [Px1000 0008 | MEM1 0xa87f b351 ???
0x1000 000c| MUL2 | S$£5 plede
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa 227?
20

The store MEM1 results in a 7LB Miss > We simply record it
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Reporting Exceptions (2/4)

Excpt. PC Tag Register Address Value
0
0
0 | 0x1000 0004 $£3 0x627f ba5a |—
1 [ 0x1000 0008 | MEM1 0xa87f b351 ?22?
0 [ 0x1000 000c| MUL2 | $£5 ?2?2?
0 [ 0x1000 0010 $£3 Oxa2cd 374f
0 [0x1000 0014 | MEM3 0x3746 09fa 2?2?
20

Write 0x627£fba5a to register $£3 as if nothing happened
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Reporting Exceptions (3/4)

Excpt. PC Tag Register Address Value
0

head
0x1000 0008 | MEM1 0xa87f b351 27?2? |—

0x1000 000c S£5 0x7677 abcd
0x1000 0010 Sf3 Oxa2cd 374f
0Ox1000 0014 MEM3 0x3746 09fa Pardrs

OO0 Ok |0 |0

tail
—

Now raise the 7LB Miss exception at location 0x10000008



Reporting Exceptions (4/4)

Excpt. PC Tag Register Address Value

0x1000 0008 | MEM1 0xa87f b351 heag

™)
™)
™)

OOO.HOOO

But also squash all instructions which followed the exception

42



Reservation Stations
D T .- K
A reservation station checks that the opg '
the Execution Unit is free (Structural

Where do we get the

A —— ; . necessary information |
Op Tagl Tag2 at decode time?!

ALU1:

ALU2: |1 |subd| ALU3 | — ?2?2? OXFFff feel

ALU3: | ] |addd| — | MUL3 |0xa87f b351 ???

>
=
c

vy
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Decoding and Dependences
e

When decoding an instruction, we are supposed to put, for
each operand, either a tag or a value in the corresponding
reservation station—but how do we know if we can read

the register file, for instance?!

The Reorder Buffer knows of all instructions
not yet committed and of their destination
registers

Possible situations:
1 No dependence - Read the value from the RF

- Dependence from an ongoing instruction
< If the value is computed > Get the value from the ROB
% If the value is not yet computed > Get the tag from the ROB
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No Dependence

head

Excpt. PC Tag Register Address Value
0
0
0 | 0x1000 0004 $f2 0x627f ba5a
O [0x1000 0008 S$£3 0xa87f b351
0 [ 0x1000 000c| MUL2 |JS£5 ?2?2?
0 | 0x1000 0010| ALU3 [J$£3 2?2?
O [0x1000 0014 | MEM3 0x3746 09fa ???
20

Looking for $£1? No ongoing instruction will produce it,
hence it is safe to read it from the Register File
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Dependence and Value in the ROB

tail
—

head

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 $£2 0x627f ba5a
0 [0x1000 0008 $£3 Oxa87f b351
0 [ 0x1000 000c| MUL2 |JS£5 ?2?2?
0 [0x1000 0010| ALU3 |J$£3 ?227?
0 [0x1000 0014 | MEM3 0x3746 09fa ?22?
0

Looking for $£27? An ongoing instruction has produced it,
hence we should read 0x627fba5a from the ROB
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Dependence and Tag in the ROB

Excpt. PC Tag Register Address Value
0
0
0 | 0x1000 0004 S£2 0x627f baSa [— =
0 [ 0x1000 0008 $£3 0xa87f b351
0 [ 0x1000 000c| MUL2 |JS£5 ?2?2?
0 [0x1000 0010| ALU3 |J$£3 22?
0 [0x1000 0014 | MEM3 0x3746 09fa ?2?2?
20

Looking for $£5? An ongoing instruction will produce it,
hence we need to use tag MUL2 as found in the ROB
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Multiple Dependences?

head

Excpt. PC Tag Register Address Value
0
0
0 [0x1000 0004 S£2 0x627f ba5a
0 [0x1000 0008 $£3 0xa87f b351
0 [ 0x1000 000c| MUL2 |JS£5 ?2?2?
0 [0x1000 0010| ALU3 |J$£3 ?227?
0 [0x1000 0014 | MEM3 0x3746 09fa ?22?
20

Looking for $£3? Two ongoing instructions produce it
and it is the most recent one which matters (tag ALU3 here)
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Dependences through Memory
e EE— ey

The way we detect and resolve dependences through
memory (a store at some address and a subsequent load
from the same address) is the same as for registers

For every load, check the ROB:

a) If there is no store to the same address in the ROB,
get the value from memory (i.e., from the cache)

b) If there is a store to the same address in the ROB,
either get the value (if ready) or the tag

but there is an additional situation now

c) If there is a store to an unknown address in the ROB
or if the address of the load is unknown, wait!
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Load-Store Queues

 The fact that there could be a store to a yet-
unknown address in ROB the makes things harder:

< Not only loads need to wait in the memory RS for their
addresses (= waiting for their operands, which is normal RS
business)

% Ready loads (= with known addresses) need to keep checking
the ROB until the address of all preceding stores is known
- In practice, this implies a strong coordination between
the memory RS and the memory (=store) part of
the ROB = All this is thus typically implemented in a
Load-Store Queue (in turn, in fact, better
implemented as individual load and store queues)

 The load queue may not be a queue, after all (see
later)



Load-Store Queues

!

Most of the Mem RS
information and logic is now
l in the Load and Store

Mem RS

Queues

ROB

\Most of the ROB information
about stores is now in the
Store Queue, but the ROB
still triggers when to write to

51

memory




Example of Load Store Queue

Does not need to

Load “Queue” be a queue, in fact Store Queue
TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 | \
LD2: | 0
head
LD3: [ 1 | ALU4 ~ MUL1 | 0x627f ba5a —
LD4: | 1 0x627f baba | — ALU3 Oxa2cd 374f
LD5: | 0 ALU1 | MUL2
LDG6: | 1 Ox10ef dd14 | — Oxa87f b351 | 0x6666 eeaa
1 1 LD3 | Ox45ef 2ba3
from tail
EUs and RF -

from
EUs and RF
Pointers to the last vy
preceding stores
MEMORY ROB




Load Queue Functionality
S EEE— s

 All ready loads (= those at known addresses) are
checked concurrently

 Each load compares its address with all preceding

store addresses and does (approximately) the following:
% If any of the preceding stores misses the address - do nothing

% If all preceding stores have an address and there is no collision >
issue the load if there are available memory ports

% If the load address equals one or more of the store addresses and if the
last of the colliding stores has the value > memory bypass =
load is executed and the returned value comes from the store queue

% If the load address equals one or more of the store addresses and if the
last of the colliding stores has no value yet > do nothing (will be
a memory bypass later)

1 This behaviour is essentially that of an RS but with the

additional issue of checking for emerging collisions in the
53 store queue
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Store Queue Functionality
S EEE— s

] Stores are executed only if

1. The address and the data for the store are known (= standard
RS functionality)

2. All preceding stores executed (= in-order commit as ROB)

3. The store is enabled from the ROB (= in-order commit w.r.t.
other instructions in the ROB)

- If any of the tests fail, the store is kept waiting

 This behaviour is essentially that of an RS combined with
the reordering of a ROB



Example of Load Store Queue:

Normal RS Behaviour in Load Queue
D T .- K

Load “"Queue” Store Queue
TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 [ \
LD2: | 0
head
LD3: » MUL1 | 0x627f ba5a —
LD4: | 1 0x627f baba | ALU3 Oxa2cd 374f
LD5: [ O ALU1 | MUL2
LDG6: | 1 Ox10ef dd14 | — Oxa87f b351 | 0x6666 eeaa
LD3 0x45ef 2ba3
tai_l’

ROB

LD3: Unknown read address = wait



Example of Load Store Queue

Potential RAW through Memory
 — o

Load “"Queue” Store Queue
TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 [ \
LD2: | 0
head
LD3: | 1 | ALU4 ~ MUL1 | 0x62%f ba5a —
LD4: | 1 0x627f baba | ALU3 Oxa2cd 374f
LD5: [ O ALU1 | MUL2
LD6: |1 [ | Ox10efddi4 | = 0xa87f b351 | 0x6666 ecaa
LD3 0x45ef 2ba3
tai_l’

ROB

LD6: Potential RAW with stores whose address is unknown - wait

56



Example of Load Store Queue:

RAW through Memory
e

Load “"Queue” Store Queue

TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 [ \
LD2: | 0

head
LD4: ALU3 Oxa2cd 374f
LD5: [ O ALU1 | MUL2
LDG6: | 1 Ox10ef dd14 | — Oxa87f b351 | 0x6666 eeaa
LD3 0x45ef 2ba3
tai_l’

ROB

LD4: Known RAW at address 0x627f ba5a - wait

57



Example of Load Store Queue:
RAW through Memory (bypass)

Load “"Queue” Store Queue

TagA Address TagA  TagV Address Value
to1: [T | Oxas/rb351 | &
LD2: | 0

head

LD3: | 1| ALU4 ~ MUL1 § 0x627f ba5a —
LD4: | 1 0x627f baba | ALU3 Oxa2cd 374f
LD5: [ O ALU1 | MUL2
LD6: | 1 Ox10ef dd14 | — Oxa87f b351 | 0x6666 eeaa

LD3 0x45df 2ba3

tail

ROB

LD1: Known RAW at address 0xa87f b351 =

return 0x6666 eeaa without accessing memory
58



Example of Load Store Queue:

Stores Released by ROB
e

Load “"Queue” Store Queue

TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 | \
LD2: | 0
LD3: | 1| ALU4 ~
LD4: | 1 0x627f baba | — ALU3 Oxa2cd 374f
LD5: (O ALU1l | MUL2
LD6: | 1 Ox10ef dd Oxa87f b351 | 0x6666 eeaa

LD3 O0x45ef 2ba3
As usual, a real
implementation may

be fairly different ROB

from this picture

Oldest store does not commit even if ready - must wait for ROB

59



Origins of Reordering

[ Robert Tomasulo in 1967 for the IBM System/360 Model 91's
floating point unit, but no support for precise interrupts

[ Smith & Pleszkun on precise interrupts, 1988

REGISTER % STAGE FUNCTIONAL VALID TAG
SOURCE DATA UNIT SOURCE
FILE TO FUNCTIONAL UNITS 3 5
> g INTEGER ADD 1 5
0
DIRECTION y's 0
OF 5 FLT PT ADD 1 4
MOVEMENT . ' . .
RESULT
SHIFT . . -
REGISTER N 0
RESULT SHIFT REGISTER
CONTROL
REORDER
RESULT BUS
BUFFER
ENTRY| DEST. EXCEP- PROGRAM
3
HEAD->» & | 0 [
5 0 0 7
TAIL > 6

REORDER BUFFER

Source: Smith & Pleszkun, © IEEE 1988



Second Step:

Dynamic Scheduling
e

61

) Tangible amount of ILP now possible
- What's next?!

| 1IF [ 1D Ex1|Ex2| wB Cycles
2| IF | 1D [Ex1|EX2|EX3|EX4 |EX5 [MEM

. [ 1F [ 1D EX1|Ex2 WB

S | IF | ID EX1 MEM| WB

= 5: IF | ID EX1 [ EX2 MEM

|2 6:( IF | ID [EX1|EX2



ILP So Far...

Py

l CycIe:s

. l -
Instructions
l g Dynamic

Scheduling
l Pipelining

1 1
Standard




Superscalar Execution
S EEEEE—

JWhy not more than one instruction
beginning execution (issued) per cycle?

JKey requirements are

“»Fetching more instruction in a cycle: no big
difficulty provided that the instruction cache
can sustain the bandwidth

<*Decide on data and control dependencies:
dynamic scheduling already takes care of this

63
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Superscalar Processor

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Multiple Buses
/

A 4

A 4

A 4

}

/4

Register File

Reservation Reservation || Reservation || Reservation
Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘
!
. Branch Load/Store
ALU 1 ALU 2 FP Unit Unit Unit
Commit Unit

(Multiple Instructions per Cycle)

Multiple Buses
Vi

4
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Third Step: Superscalar Execution
e EE— ey

IF

ID

EX1

EX2

EX3

WB

IF

ID

EX1

EX2

EX3

EX4

EX5

MEM

w

IF

ID

EX1

MEM

WB

Instructions

IF

ID

EX1

EX2

EX3

EX4

EX5

WB

IF

ID

EX1

IF

ID

EX1

EX2

EX3

IF

ID

EX1

MEM

WB

Cyclés

MEM

IF

ID

EX1

EX2

EX3

EX4

EX5

EX6

WB




Several Steps in Exploiting ILP

l Cyclés |

Instructions l L [ 1]

| Superscalar

l l Dynamic

Scheduling
l Pipelining

1 1
Standard




Intel Nehalem and AMD Barcelona:
Now Oldish Microarchitectures

128 Entry
ITLB (4 way)

32 KB |-cache (4 way) <

~5-128 bits

168 Pre-Decode, Fetch Buffer |

‘i\G instructions

18 Entry Instruction Queue |

k' ] k' "
Compl Simple || Simple || Simple
e e Deci Dec Deci Dec
[—blxd uHops ‘£\1 uop ‘i\ﬂ wop ‘i\1 uop
| 28 Entry pop LSD Buffer |
‘i\d uops

| Register Alias Table and Allocator |

4 nops 4 nops

256
bits

128 Entry Reorder Buffer (ROB) 7+ [Retirement Register Fil
$4 Y (Program Visible State
nops

36 Entry Reservation Station

Port 0

Port 1 Port 5

e

Internal Results Bus

Port 2

7

Store
128 bits

Intel Nehalem

32 Entry
L11 TLB (fully 64 KB l-cache (2 way)
1 fzss bits

Instruction —| 328+ Predecode, Pick Bufer | e
Fetch Unit ; i i K] bits

neoce Decode| Decode| Decode

Engine

3 uop “‘-1—2 pop “‘.1—2 uop ‘#1—2 uop
Pack Buffer |
$3 wnop

72 Entry Reorder Buffer (ROB)

l

I

!

l

FP Mapper and Renamer | |

44 Entry Integer Future File

l

I

|

|

|

v v v
8 Entry 8 Entry 8 Entry
1FZPE£? 1F2PE|2? 1FQPE|2? Integer, Memoary || Integer, Memory || Integer, Memaory
Scheduler Scheduler Scheduler

120 Entry FP Reg File

B

L A

64 bits

ﬁ

AMD Barcelona

//realworldtech.com/, © RWT 2008

http:

Source
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Intel Skylake Microarchitecture

8 pops

000 Section

I-TLB T L2 cache

=20 bytes

el

117 2x 4 wops EREEE 6 iops

.| D-TLB =13 L2 cache

IR

© The Linley Group, 2015
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AMD Zen 3 Microarchitecture

000 Section

Branch L |-TLB | Instruction Cache (32KB, 8 ways) [—— L2 cache
Pred 256
Fetch addr 256 |
FS:;’P Instruction Byte Queue
; ” | S SR S
. x86 x86 xB6 x86 | | Micro-

_ Micro-Op | | pecoder | | Decoder | | Decoder | | Decoder [ code
fone | [ e e —————F——————Tuines
L:In 'T YT Micro-Op Queue + Reg Rename

4 pops 1 11 1 1 6 pops
* ¥ ¥ ¥ i k L ¥ ¥ l
Scheduler Scheduler Scheduler Scheduler Sched | |Sched
' ' | ' + | I |
ALU 3x FP 3x FP
/B AGU | ALU || AGU || ALU | AGU || ALU BR Unit* Unit*
. 2 I I e i
64-Bit Integer Registers FP + AVX Reg
x 1 3x 256
Load/Store Queues T t I T t 1
Mam: 3x 256
addr | 3X | p.TLB Data Cache (32KB, 8 ways) +—z— L2 cache

© The Linley Group, 2020



Apple Firestorm Microarchitecture

70

© The Linley Group, 2021
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References on ILP

S E— g
2 AQA 5% ed., Appendix C
 CAR, Chapter 4—Introduction

1 J. E. Smith and A. R. Pleszkun, Implementation of
Precise Interrupts in Pipelined Processors, 1EEE
Transactions on Computers, 37(5):562-73, May 1988



Register Renaming

(How Do | Get Rid of WAR and WAW?2L!...)



Register Renaming

S EEE— s
- Importance of removing WAR and WAW dependences

with “close-to-ideal” instruction windows (2K entries)

and maximum issue rate (64 per cycle)

60 o=

Instruction issues per cycle

0 1 1 1 1 ]
Infinite 256 128 64 32 None

Number of registers available for renaming

- gce +espresso e i
-o- fpppp ——doduc -A- tomcatv

Source: AQA, © Morgan Kauffman 1996



A Little History of (Modern)
Renaming

Compaq
Motorola
HP

IBM

PowerPC
Alliance

MIPS

RISC processors

Sun/Hal

Intel
IBM
TRON

Cyrix

CISC processors

Motorola

AMD

[ Partial renaming
[ Full renaming

74

Alpha
MC88000
PA
Power
PowerPC
R

Sparc

80x86

ES
Gmicro

M
MC68000
Nx/K

....................................................................................................................................................................................................

A

Power2 (6/4)1+

PPC 601 (3)™"

PPC 603 (3)'5"

Alpha 21264 (4)"]

PA7200 (2)°

PAB000 (4)°

PA82000 (4)?

PPC 604 (4)16"

P2SC (6/4)!6++

PPC 602 (2)'7"

PPC 620 (4)1%"

UltraSparc (4)

R10000 (4)21

PMI (4)2
(Sparcéd)

Pentium Pro (32"

Pentium 111 (3)2°

(RSBO00) |
SuperSparc (3)
ES/9000 (2)
1990 1991 1992

1993

1994

*PPC designates PowerPC.
*The Nx586 has scalar issue for CISC instructions but a 3-way superscalar core for converted RISC instructions.
**The issue rate of the Power2 and P2SC is 6 along the sequential path while only 4 immediately after a branch.

Source: Sima, © IEEE 2000

1995

1996

First: IBM 360/91 (1967, FP partial renaming)

1997

1998
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Main Dimensions in Renaming

Policies
P

1. Scope of register renaming

< Simple: only some classes of registers are
renamed (e.g., integer or FP only)

2. Layout of the renamed registers
% Where are they?

3. Method of register mapping
% Allocation, tracking, and deallocation

4. Rename rate

<+ How many instructions can be renamed at
once?



Where Are the Rename Registers?
e EE— ey

Four possibilities:

1. Merged rename and architectural RF
2. Split rename and architectural RFs

3. Renamed values in the reorder buffer
4

. Renamed values in the reservation
stations (a.k.a. shelving buffers)



Four Possible Locations for Rename

Registers

Merged
architectural and
rename register file

Stand-alone
rename register file

Holding renamed
values in the ROB

|
' '

Holding renamed
values in the
shelving buffers

|
' '

Method of |
operand fetching + ‘
Merged
ugﬂdegggg g o |rename and Rename Architectural
program status arch_ltectural register file register file
register file

Architectural

ROB register file

Architectural
register file

Shelving
buffers

|

Power1 (1990)
Power2 (1993)
ES/9000 (1992)
Nx586 (1994)

PMI (Sparc64, 1995)
R10000 (1996)
R12000 (1999)
Alpha 21264 (1998)

77

'

PowerPC 603 (1993)
PowerPC 604 (1995)
PowerPC 620 (1996)
Power3 (1998)

PA 8000 (1996)

PA 8200 (1997)

PA 8500 (1999)

'

Am290000 superscalar (1995)
K5 (1995)

M1 (1995)

K6 (1997)

Pentium Pro (1995)

Pentium Il (1997)

Pentium [l (1999)

Source: Sima, © IEEE 2000




Dynamically Scheduled Processor
e

Instruction .
Fetch & Decode ArCh't_eCtu ral
Unit Registers

v \ 4 \ 4 v

Reservation‘ Reservation‘ Reservation‘ Resen/ation‘

Stn. Stn. Stn. Stn.
Register File
. Branch Load/Store
ALU FP Unit Unit Unit
Commit
Rename Sl
Registers

78



Typical ROB

from 1 from EUs

F&D Unit | il | !

PC Tag Register Address Value

head to MEM

0x1000 0004 — Sf3 0x627f baba and RF

0x1000 0008| ALU1 Oxa87f b351
0x1000 000c| MUL2 | $£5

tail

OlRr|kL,RIL,R|O|O

79



Tracking the Mapping: Where is

Physically an Architectural Register?
e

Mapping in a Mapping in the
Mapping Table Rename Buffer
Dest.
Entry | RB Entry |register| Latest Value
valid | index valid no. bit Value valid
0 — 0
Mapping : Rename buffers
table Associative
lookup
5 1 [ 17 forr7 =9 1 8 1 80 1
6 O —» 10| 1 7 0 7 1
Look
o MON e - :
g1 | 14 =120 D | @D | @ 70 ©
S I §5— ) I
V V
12 12
(RB index = 12) (RB index = 12)

Source: Sima, © IEEE 2000
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MIPS R10000:
Merged RF with Mapping Table

6 5 5 5 5 6
;FLTX| fR | fS | fT | D IMADD} Original instruction format in memory

Fields are rearranged during instruction predecode

4 as instruction is written into the cache during refill
Unit LFLTXIMA[EH iS [ T I R l fD | Instruction format in cache contains extra 4-bit unit field
L_ﬂ—l
/ 5 5 5 5 32-entry
_ / FIFO RAM
32x6-bit RAM | Adr © Adr . Adri Adr| New Fp Graduation
(4 write ports EP m ap LW |- free |
B 16 read ports) : 6 A I
3ranch Read: Read: Read: Read list
logic 6 6 6 6 Old destination register
FP |
busy [
bit [

|

Y v_ ¥y YYY Y ¥ S ¥ ¥ - Done ,
L or ’ Unit | | Func leyl'OpA,OpB OpC |{Dest | | Tag WrPtrlb Old | || Tog - ’—11 |
4

p
i

[apy] —*Ldsst |l dest
1 1 3 6 6 6 6 5 RdPtrl . % 6 ar
, FIFO
Floating-point queue 16 entries pointers Active list

Remark the complexity of the Mapping Table:
O 4-issue processor (= 4x above scheme in parallel)

16 parallel accesses: 16 read ports and 4 write ports!
81

32-entry
FIFO RAM

Source: Yeager, © IEEE 1996
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Possible States of each Register
in a Merged File

Initialized Entry is allocated

(remaining registers) \ to an issued instruction

Available

Instruction

Architectural register is canceled

. ) Instruction is finished
is reclaimed

Initialized Instruction
(first n registers) is completed

Source: Sima, © IEEE 2000
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State Transitions in a Merged File
e

 Initialisation:
% First N registers are "AR", others “Available”

1. Availlable = Renamed Invalid

% Instruction enters the Reservation Stations and/or the ROB:
register allocated for the result (i.e., register uninitialised)

2. Renamed Invalid > Renamed Valid
% Instruction completes (i.e., register initialised)

3. Renamed Valid = Architectural Register

% Instruction commits (i.e., register “exists”)
4. Architectural Register = Available

/

% Another instruction commits to the same AR (i.e., register is
dead)

5. Renamed Invalid and Renamed Valid = Available

% Squashing



MIPS R10000:

32 AR, 64 PhR, Merged Register File

6 5 5 5 5 g
LFrx | R [ is [ i [ @ [maADD]

Original instruction format in memory

Fields are rearranged during ins
as instruction is written intg

unit|  [FLrxmapp][ s T [ R [ D |

\__..ﬂ_l

/

Instruction for

‘Mapping Table:
fD AR - PhR

n predecode
ache during refill

cache contains extra 4-bit unit field -

Free Register Table:

32x6-bit RAM [[Rar  Adr T A Adr Up to 32 empty PhR
(4 write ports FP man : Wr : _
- 16 read ports) : v :
Branch Read: Read: Read: Read
logic : :
FP
busy
bit
I-Queue lﬁe v. Statio ROB
ll*.lll lllq.l q.rl EEE | N | | I‘IB(mEllll.lll
(] e e : -
. Br . e || ‘ | ® 32-entr
u ; o v | i 1] ! ! y
= mask \ Unit ! Func LRdy R OpA ;;OpB OpC s ' o) _D. Exc ||CC E: FIFO RAM
5 4 A 10 3 6 6 6 g - ). g 1 6 3%
- - / = FIFO .
:- Floating-point queue 16 entries : pointers " ActiveMist n
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESm - EEE EEEER BB EEEEER
New PhR Previous PhR 7D AR

to Hold /D Holding 7D

Source: Yeager, © IEEE 1996
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MIPS R10000:
Information Flow

1.

Available 2 Renamed Invalid

% Read new PhR from top of Free Register Table

% Create new mapping LogDest - Dest in the Mapping Table
% Set corresponding Busy-Bit (=invalid) in the Status Table
Renamed Invalid > Renamed Valid

% Write PhR Dest indicated in the I-Queue

> Reset corresponding Busy-Bit (=valid) in the Status Table
% Mark as Done in the corresponding entry in the ROB
Renamed Valid > Architectural Register

% Implicit (removal of historical mapping LogDest > Dest)
Architectural Register 2> Available

% Free PhR indicated by O/dDest in the entry removed from the ROB
Renamed Invalid and Renamed Valid > Available

% Restore mapping from all squashed ROB entries (from tail to head) as
LogDest - Dest

% Reset corresponding Busy-Bit (=valid) in the Status Table

L)

4

D)

L)

4
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State Transitions Replaced by
Copying in Stand-alone RRF

 Initialisation:
< All Rename Registers are "“Available”

1. Availlable = Renamed Invalid

% Instruction enters the Reservation Stations and/or the ROB:
register allocated for the result (i.e., register uninitialised)

2. Renamed Invalid = Renamed Valid

% Instruction completes (i.e., register initialised)

3. Renamed Valid 2 Available

% Instruction commits (i.e., register “exists")
= Value is copied in the Architectural RF

4. Renamed Invalid and Renamed Valid = Availlable
% Squashing (no copy to the Architectural RF)
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State of the Rename Registers in
the Commit Unit (ROB)

from from EUs
F&D Unit | il | ! l
PC Tag Register Address Value
0
0
head to MEM
1 |0x1000 0004| — | $£3 0x627f ba5a and RE
1 | 0x1000 0008 | ALU1 0xa87f b351 ?2??
1 [ 0x1000 000c | MUL ‘ $£5 ?22?
tail

Renamed Valid Renamed Invalid
Available
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How Many Rename Registers?
e
 In-Flight instructions:

N. =Ny + N, +N,, + Ny,

in— flight
J Rename Registers:

N SNy +N, +N,,

rename

1 ROB size:
NROB < N'n—ﬂight

l

Note: if strictly < then structural stalls can occur



Number of Rename Registers
e EE— ey

Type and available humber of rename buffers in recent superscalars as
well as four related parameters of the enlisted processors.
Processor type Type of No. of Width of dispatch Total no. Reorder
(year of volume rename rename buffers Issue window of rename buffers width

shipment) buffer FX FP rate (wdw) (nn) (nROB)
RISC processors
PowerPC 603 (1993)  Ren. reg. file N/A 3 3 N/A 5
PowerPC 604 (1995)  Ren. reg. file 12 8 4 12 20 16
PowerPC 620 (1996)  Ren. reg. file 8 8 4 15 16 16
Power3 (1998) Ren. reg. file 16 24 4 20(?) 40 32
R10000 (1996) Merged 32 32 4 48 64 32
R12000 (1998) Merged 32 32 4 48 64 48
Alpha 21264 (1998) Merged 48 41 4 35 89 80
PA 8000 (1986) Ren. reg. file 56 56 4 56 112 56
PM1 (1996) Merged 38 24 4 36 62 62
x86 (CISC) processors
Pentium Pro (1995) In the ROB 40 32 20" 40 40"
Pentium 11 (1997) Inthe ROB 40 3? 207 40 40'
K5 (1995) In the ROB 16 42 117(?) 16 16!
K6 (1996) In the ROB 24 32 24! 24 24!
M3 (2000 expected) Merged 32 N/A 3? 56 N/A 322

: RISC operations

2 %86 instructions (on average, produce 1.3 to 1.9 RISC operations*)

? Questionable data

N/A  Not available

Source: Sima, © IEEE 2000



Actual Choices in Commercial

Implementations
e EEEE— gy

Basic alternatives of register remaining

Merged architectural Separate Renaming Renaming within
and rename register file rename register files within the ROB the shelving buffers
Basic Using a Mapping Using a Mapping Using a Mapping Using a Mapping
alternatives mapping table  within the RBs  mapping table within the RBs mapping table within the RBs mapping table within the RBs
Issue-  Dispatch- Issue-  Dispatch- Issue- Dispatch- Issue- Dispatch- Issue- Dispatch- Issue- Dispatch-
Implementation  bound bound bound bound bound bound  bound bound  bound  bound bound  bound
schemes operand  operand operand operand operand operand operand operand operand operand operand operand
fetching  fetching fetching fetching  fetching fetching fetching fetching fetching fetching fetching fetching
Proposals Keller (1996)° Smith-Pleszkun®?
(1987)

Johnson®® (1987)

Sohi, Vajapeyem44
Processors Power1 (1990) PowerPC 603 (1993) PentiumPro (1995) | (1987)

ES/9000 (1992) PowerPC 604 (1995) Pentium Il (1997) P

Power 2 (1993) PowerPC 620 (1996) Pentium Il (1999) S

P2SC (1996) PA 8000 (1996) AM29000 (1995)* ~

Nx586 (1994) PA 8200 (1997) K5 (1995) w

R10000 (1996) Power3 (1998) Lighting®® (1991) m

R12000 (1999) PA 8500 (1999) K6* (1997) =

M3 (2000) ©

PMI (1995) <
(Sparct4) o
=

5

o

-2

)

A

*The shelving buffers are also implemented in the ROB. The resulting unit is occasionally called the DRIS.




Source:

Processor
Bit-width
Cores/chip x
Threads/core
Clock Rate
Cache: L1-L2-L3 -
1/D or Unified

Execution Rate/Core

Pipeline Stages
Out of Order
Memory Bus
Package

I1C Process

Die Size
Transistors

List Price (Intro)
Power (Max)
Availability
Scalability
SPECint/fp2006
[Cores]
SPECint/fp2006_rate
[Cores]

x86 Codename
Microarchitecture

Processor
Bit-width
Cores/Chip x
Threads/Core
Clock Rate
Cache: L1-L2-L3 -
1/D or Unified

Execution Rate/Core
Pipeline Stages

Out of Order
Memory Bus
Package

1C Process

Die Size

Transistors

List Price (Intro)
Power (Max)
Availability
Scalability
SPECint/fp2006
[Cores]
SPECint/fp2006_rate
[Cores]

Architecture Status

Intel 1-core

Xeon
32/64-bit

1%x2

3.80GHz
12K/16K -
2M - N/A

3 Instructions

31
126
800MHz
LGA-775
90nm 7M
109mm?
169M
$903
110W
3Q05
1-2 Chips

11.4/11.7 [2]

20.9/18.8 [2]

AMD 1-core
Opteron 854
32/64-bit

1x1

2.80GHz
64K/64K -
1M - N/A

3 Instructions

12int /17 fp
72
6.4GB/s
uPGA 940
90nm 9M
106 mm?
120M
$1,514
93w
3Q05
2-4 Chips

11.2/12.1 2]

41.4/45.6 [4]

Irwindale Athens
Netburst K8
Intel Intel
Itanium 2 9050 | Itanium 9150M
64-bit 64-bit
2x2 2x2
1.60GHz 1.67GHz
2 x 16K/16K - 2 x 16K/16K -
1M/256K - 1M/256K -
12M(on) 12M(on)
6 Issue 6 Issue
8 8
None None
8.5GB/s 10.6GB/s
mPGA-700 mPGA-700
90nm 7M 90nm 7M
596mm? 596mm?
1.728B 1.728B
$3,692 $3,692
104W 104W
3Q06 4Q07
1-64 Chips 8-128 Chips
14.5/17.3 [2] N/A

1534/1671 [128]

Inactive

2893/N/A [256]
Active

Intel 2-core
Xeon X5270 '
32/64-bit

2x1

3.50GHz
2 x 32K/32K -
6M - NA
1 Complex +
3 Simple
14
96
1333MHz
LGA-771
45nm
107mm?
410M
$1,172
80W
3Q08
1-2 Chips

26.5%/25.5% [4]

84.9%/57.7* [4]

Wolfdale
Core
IBM

POWER5+

64-bit
2x2

2.20GHz
2 x 64K/32K
1.92M -
36M(off)
5 Issue
15
200
12.8GB/s
MCM-5370 Pins
90nm 10M
245mm?
276M
N/A
100W
4Q05
1-32 Chips

10.5/12.9 [1]
197/229 [16]

Inactive

Microprocessor Report, © Cahners 2009

AMD 2-core
Opteron 8224SE
32/64-bit

2x1

3.20GHz
2 x 64K/64K -
2 x 1M - N/A

3 Instructions

12int /17 fp
72
10.6GB/s
LGA-1207
90nm 9M
227mm?
233M
$2,149
120W
3Q07
1-4 Chips

14.1/14.2 [8]

105/96.7 [8]

Santa Rosa
K8
IBM
POWER6
64-bit
2x2

5.00GHz
2 x 64K/64K -
2 x 4M -
32M(off)
7 Issue
13
Limited
75GB/s
N/A
65nm 10M
341mm?
790M
N/A
>100W
2Q08
2-32 Chips

15.8*/20.1 [1]

1837*/1822 [64]
Active

Intel 4-core

32/64-bit
4x1

2.93GHz
4 x 32K/32K -
2 x 4M - N/A
1 Complex +
3 Simple
14
96
1066MHz
LGA-771
65nm 8M
2 x 143mm?
2 x291M
$2,301
130W
3Q07
1-4 Chips

21.7Y/18.9Y [16]

1847/108 [16]

Tigerton
Core
Fujitsu
SPARC64 VI
64-bit
2x2

2.40GHz
2 x 128K/128K -
6M - N/A

4 |ssue
15
64
8GB/s
412 1/0 Pins
90nm 10M
421mm?
540M
N/A
120W
2Q07
4-64 Chips

9.7/21.77 [32]
1111/1160 [128]

Inactive

AMD 4-core

32/64-bit
4x1

2.50GHz
4 x 64K/64K -
4 x512K - 2M

3 Instructions

12int /17 fp
72
10.6GB/s
LGA-1207
65nm 11M
283mm?
463M
$2,149
105W
2Q08
2-4 Chips

14.4%/18.5% [8]

170*/156* [16]

Barcelona
K10
Fujitsu
SPARC64 VII
64-bit
4x2

2.52GHz
4 x 64K/64K -
6M - N/A

4 Issue
15
64
8GB/s
412 1/0 Pins
65nm 11M
400mm?
600M
N/A
135W
3Q08
4-64 Chips

10.5%/25.0% [64]

2088*/1861* [256]
Active

Intel 6-core

32/64-bit
6x1

2.67GHz
6 x 32K/32K -
3 x3M - 16M
1 Complex +
3 Simple
14
96
1064MHz
LGA-771
45nm
503mm?
1900M
$2,729
130W
4Q08
1-4 Chips

22.0%/22.3% [24]

274%/142 [24]

Dunnington
Core
Sun
UltraSPARC T2+
64-bit

8x8

1.40GHz
8 x 8K/16K -
4M - NA

16 Issue
8int /12 fp

None
42.7GB/s
1831 Pins

65nm
342mm?

503M

N/A

95W

2Q08
2 Chips

N/A

142/111 [16]

Active

All SPEC scores are base. * Score measured at 4.20GHz (not 5.00GHz).

91

High-End
Processors
in 2009

No renaming
only in
UltraSparc:
Use of register
windows made it
very difficult to
implement
renaming (but
Fujitsu eventually
managed)

Nor in Itanium,
of course...
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References on Register Renaming
S EEEEE—
2 AQA 5t ed., Appendix C and Chapter 3
1 PA, Sections 6.3, 6.4, and 6.5
 CAR, Chapter 5—Introduction

 D. Sima, 7he Design Space of Register Renaming
Technigues, IEEE Micro, (20):5, Sept.-Oct. 2000

K. C. Yeager, The MIPS R10000 Superscalar
Microprocessor, IEEE Micro, 16(2):28-40, April 1996



Prediction and Speculation

(Don’t Know I1t? Don’t Wait but Guess...)



94

Prediction & Speculation: The Idea
S EEE— s

dSome operation takes awfully long?

JdThe processor needs the result to proceed?

% To fetch the next instruction, one needs to know
which one must be fetched

< To perform a computation, one needs the operands

Don’t wait!!!

1. Make a guess (= Predict) and
2. Proceed tentatively (= Speculate)
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General Problems
- ]

1. How do I make a good guess?

% Either one outcome is typical and far more frequent
= Static prediction

% Or I need to remember some history
= Dynamic prediction

2. What do I do if the guess was wrong?

% Undo speculatively-executed instructions (“squash”)
= May cost nothing—e.qg.,
» Squash some results
= May cost something—e.qg.,
» Empty pipelines

> Restore saved state
» Execute compensation code
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Prediction & Speculation
S EEE— s

JHave we already seen a form of prediction and
speculation in this course?

Precise exceptions

dPrediction: For every instruction, we have
guessed that there will be no exception (static
prediction)

dSpeculation: In case of exception we have
used the ROB to squash all instructions after the
faulty one raising the exception
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Precise Exceptions (1/4)

Excpt. PC Tag Register Address Value
0
0
0x1000 0004 S£3 0X627f baSa |— =%
1 [Px1000 0008 | MEM1 0xa87f b351 ???
0x1000 000c| MUL2 | S$£5 plede
O [0x1000 0010 $£3 Oxa2cd 374f
O [0x1000 0014 | MEM3 0x3746 09fa 227?
20

The store MEM1 results in a 7LB Miss > We simply record it
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Precise Exceptions (2/4)

Excpt. PC Tag Register Address Value
0
0
0 | 0x1000 0004 $£3 0x627f ba5a |—
1 [ 0x1000 0008 | MEM1 Oxa87f b351 ?22?
0 [ 0x1000 000c| MUL2 | $£5 ?2?2?
0 [ 0x1000 0010 $£3 Oxa2cd 374f
0 [0x1000 0014 | MEM3 0x3746 09fa 2?2?
20

Write 0x627£fba5a to register $£3 as if nothing happened
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Precise Exceptions (3/4)

Excpt. PC Tag Register Address Value
0

head
0x1000 0008 | MEM1 0xa87f b351 27?2? |—

0x1000 000c S£5 0x7677 abcd
0x1000 0010 Sf3 Oxa2cd 374f
0Ox1000 0014 MEM3 0x3746 09fa Pardrs

tail
—

OO0 Ok |0 |0

Now raise the 7LB Miss exception at location 0x10000008



Precise Exceptions (4/4)

Excpt. PC

Tag

Register

Address

Value

0x1000 0008

MEM1

Oxa87f b351

?2?2?

head

o O C:D‘llll'[ﬂ- OO0 |O

But also squash all instructions which followed the exception
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A General Idea
B
J After a prediction, hold every potential change in
state of the processor (e.q., register values,
memory writes) in a buffer

If the prediction turns out to be correct, let the
content of the buffer affect the state (=
COMMIT)

JIf the prediction turns out to be wrong, simply
trash the content of the buffer (step 4 above)

Our ROB does just that!
...and once we have it, we can do much more with it!
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Prediction & Speculation
S EEE— s

1So far:
“*Precise exceptions

What's next?
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Branch Prediction and Speculation
S EEE— s

1 Prediction

% Static: Maybe we can assume that every backward
branch is part of a loop and thus usually taken

“* Dynamic: Maybe we can observe what happens
during execution and learn
JSpeculation

“In a simple pipeline we may simply fetch and decode
instructions =» easy, no state changes

“In a complex OOO superscalar we may really execute
instructions speculatively = ROB
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Control Hazards

1000:
1004:
1008:

1012:

> time (cycles)

F D ‘M Y beq $r0, $rl, loop
flé}D E MW sub $r2, $r0, $rl
FID|E W
FID EMW

Causality violation!
We fetch an instruction before we know which one!



Control Hazards Solved
by Stalling the Pipeline

1000: | FID| E®M | W beq $r0, $rl, loop
1004: FI FeF DIEIMIW sub $r2, $r0, S$rl
1008: FID E MW
1012: / \ FIFID|E M

valcated because f could have  staled pipelne

been the wrong instruction

d We can stall the pipeline once it is discovered, after D, that an
instruction was a branch

 If, for instance, the correct address of the next instruction is known
at the end of the E stage, 2 cycles are lost every branch



Speculative Fetch and Decode

1000:| F /D | E®M |W

1004: F| D®E MW

1008: F D|E W

1012: / FIDIEIMW
Speculative F and D, correctly predicted

1000:| F /D | E®eM |W

1004: FID

1008: F

Ioop:////" FIDEMW

beq

sub

beq

sub

Speculative F and D, wrongly predicted and thus squashed (simple invalidation in the pipeline)

$r0, $ril,

$r2, $r0,

$r0, $rl,

$r2, $ro0,

loop

sSrl

loop

Srl
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Branches in the ROB

Actual target is

initially unknown

head

Excpt. PC Tag Register Address Value
0
0
0 [ 0x1000 0004 $£3 0x627f ba
0 |ox1000 ooo ?22?
0|oxi111abog|fuL2 | s£5 | 272
0 [0x1111 abOc $£3 374f
0 |0x1111 ab10j) MEM3 0x3746 09fa ?
=0

Predicted branches inserted in the ROB with predicted target



Branches without Outcome
Block the ROB

Excpt. PC Tag Register Address Value
0
0
0
0 [0x1000 0008| BR3 Ox1111 ab08|  2?27? }%
O [0x1111 ab08 S£5 0x7677 abcd
O | 0x1111 abOc S£3 Oxa2cd 374f
O |0x1111 ab10| MEM3 0x3746 09fa ?22?
20

A predicted branch whose outcome is unknown cannot be committed
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Correctly Predicted Branches

Are Ignored

tail
—
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Excpt. PC Tag Register Address Value
0
0
0 —
O [0x1000 0008| BR3 0x1111 ab08|0x1111 ab08
O [0x1111 ab08 S£5 0x7677 abcd
O [0x1111 abOc $£3 Oxa2cd 374f
0 |0x1111 ab10 | MEM3 0x3746 09fa | 227
0

BR3 can commit (= do nothing and remove from ROB)

head



Mispredicted Branches
Trigger a Squash

Excpt. PC Tag Register Address Value

I

head

o O C:D‘llll'[:> OO0 |O

BR3 triggers a squash and causes fetch to restart at 0x1000000c¢
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0x1000 0008| BR3 0x1111 ab08 | 0x1000 000C r==s==p>



Branch Prediction and Speculation
S EEE— s

1 Prediction

% Static: Maybe we can assume that every backward
branch is part of a loop and thus usually taken

“* Dynamic: Maybe we can observe what happens
during execution and learn
JSpeculation

<In a simple pipeline we may simply fetch and decode
instructions =» easy, no state changes

“In a complex OOO superscalar we may really execute
instructions speculatively = ROB
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Branch Prediction
- ]

Branch outcome and Predicted direction
additional info\ /V (Taken/Not Taken)
Branch
Predictor
Logic
/ \ Predicted target
Current PC

address
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Branch Target Buffers
e

PC
31 0 CAM
— _/
"
Branch Address Target Address
0x1234 5678 Oxal23 fee4
One needs to know if a 0x1235 ef53

just fetched and yet
undecoded instruction
is a branch and
what is the destination
(computed branch,
relative address,
return, etc.)
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More Complex But Cheaper

Branch Target Buffers
e

PC (Branch Address)
31 8 7 0

- 7 \\
g Y

l Tag (31..8) | Target Addr. Tag (31..8) | Target Addr.
0000 0000: | 0x1234 56 | Oxal23 feed 0x5678 23 | 0x/7834 3847/
0000 0001: | O0x1235 ef 0x1235 78
0000 0011:

Typical Cache/TLB
organisation

\.

1111 1110:
1111 1111:

Etc.
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Which Strategy to Predict?
e EE— ey

 Static predictions: ignore history
1. Never-taken or always-taken
2. Always-taken-backward (e.g., loops)
3. Compiler-specified, etc.

< Still a form of dynamic control speculation,
because the squashing process is done in
hardware

J Dynamic prediction: learn from history

*+» Record how often a branch was taken in the
past
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Which Strategy to Predict
Dynamically?
e

1. Same outcome as last time

% Keep one bit of history per recently visited branches
= Needs an associative memory =» expensive

< Keep one bit of history per hashed address
= Needs only a RAM =» inexpensive

= Different branches alias =» mistakes, but we are only guessing,
anyway...

2. Same outcome as last few times (inertia)

% Keep a two-bit saturating history counter per hashed
address; use sign as a predictor
=  Tuned to for loops: one misprediction is normal (last iteration)

and should not modify the successive prediction (first iteration of
a new execution)

116
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Branch History Table
e

PC (Branch Address)

31

8 7 0

A\

\.

Y

0000 0000:
0000 0001:
0000 0010:
0000 0011:

1111 1110:
1111 1111:

One-bit Prediction

oOl—=R|—=]10O

ol—|...

/

not taken
taken
taken

not taken

taken

not taken

OR

01

10

11

01

10

00

Two-bit Prediction

\

not taken
taken
taken

not taken

taken

not taken



Branch History Table

PC (Branch Address)

&

\.

- /

31 l'" 8 7 o One-bit Prediction

< ? ! ? 0000:
00

0001:

Isn't there something
missing here?! 0000 0010:

Think of caches or 0000 0011:
even of BTBs...

O |Rr|=]|O

Speculation brings us in a whole new world

not taken
taken
taken

not taken

OR

We do not care to be always right
but only to be right most of the time!
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01

10

11

01

Al

v
0

Two-bit Prediction

\

not taken
taken
taken

not taken

taken

not taken



One- vs. Two-Bit
Prediction Schemes

O Simplest one-bit predictor: “do the same as last time”

Taken € —— Actual outcomes
Taken /‘\
Why? (G @)
\./’ Not taken
Not taken — Predictions
O Two-bit predictor (sattyating counter): adding some “inertia” or
“take some time to chdange your mind”
“Weak"” Prediction “Strong” Prediction

rogogge

\/’ Not taken

o Not taken Not taken Not taken
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One- vs. Two-bit
Prediction Schemes and Loops

Taken Taken Taken

Taken /‘\

ooz

Not taken
Not taken Not taken Not taken

d How many mispredictions for 1Loop2 every iteration of 1oop1?
loopl: for (i = 0; i < ROW; i++) {
..do something..
loop2: for (j = 0; j < COL; j++) {

..do something..
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Exotic Prediction Schemes

 Simple two-bit saturating counter

Ta ken Ta ken Ta ken

Taken

Not taken

Not taken Not taken Not taken

 Modified two bit saturating counter

Two mispredictions - Strong reversal (e.g., UltraSPARC-I)
Taken
Taken Taken Taken

Not taken Not taken




Prediction Accuracy

-

nasa7 0%
1%
09
matrix300 0%
0%
1%

tomcatv 09%

1%

doduc

spice
SPECS89
benchmarks

fpppp

gcc

espresso

Mispredictions

18%

eqntott 18%

10%
10%
5%

0% 2% 4% 6% 8% 10% 12% 14% 16% 18%

Frequency of mispredictions

Il 4096 entries: @ Unlimited entries: [0 1024 entries
2 bits per entry 2 bits per entry (2.2)
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Exploiting Correlation

(two-level or gselect Predictors)
e

Pattern History Table (PHT)
2™ standard n-bit predictors

B(gg”Ch Exploit correlation:
address (m,n) Branch Predictor Buffer
L, A global m-bit predictor uses the
4 bits outcome of the last two branches to

select one among four different

predictors

Branch
outcomes L
2 bits l /
Branch
prediction = Branch History Register (BHR):
m-bit shift register
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Exploiting Correlation
(two-level or gselect Predictors)

Branch

address

L > <

/
4 bits

Branch

outcomes L

2 bits

124

I

Branch

prediction

Branch
Branch  54dress
outcomes
| 4 bits
L /
+>
2 bits

T <

11

I

Branch
prediction



McFarling gshare Predictor

Branch Branch
Branch  jddress Branch address
outcomes _ outcomes _
L | o L | 6 bits 6 bits
2 bits _ _ 6 bits _
L replace concatenation
with a better hash
function
gselect \ gshare \
predictor ! predictor !
Branch Branch
prediction prediction
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The Sky (or the Architects’

Ingenuity) Is the Limit...
B
dTournament predictors

%+ Combine several predictors (typically local, such as a
simple 2-bit predictor, with global, such as a gshare
predictor)

% Use a selector to guess which would be the best
predictor across the set

% In case of misprediction it is not self-evident how to
update the whole (update the predictors and/or
update the selector?!)...

dTagged hybrid predictors
4.
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Return Address Stack
I EEEEEII———————.

Special elementary case of branch prediction:
“*Small stack (e.g., 8-16 values)
% Each call (CALL, JAL, etc.) pushes a value

% Each return (RET, JP $ra, etc.) pops a predicted
return address

d Functionally identical to the “real” stack but
avoids any SP manipulation, memory accesses,
argument bypassing, etc.
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Misprediction Has High Cost = Lots

of Efforts in Improving Accuracy
e

J Pipelines become more and more deep (e.g., up
to 22-24 cycles in Pentium 4)

dIssue width grows (typically 3-8)
JLarge number of in-flight instructions (hundreds)
dMany predicted branches in-flight at once

d Probability of executing speculatively something
useful reduces quickly

all _pred
ptot = I I pi
i
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Apple Firestorm Microarchitecture
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Prediction & Speculation
S EEE— s

1So far:

“*Precise exceptions
“*Branches

What's next?
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Reminder:

Dependences through Memory
e EE— ey

Load “"Queue” Store Queue
TagA Address TagA  TagV Address Value
LD1: | 1 0xa87f b351 | \
LD2: | 0
head
LD3: | 1 | ALU4 ~ 0x627f ba5a —
LD4: | 1 0x627f baba | — ALU3 Oxa2cd 374f
LD5: | 0 ALU1
oe: (1 | Ox10efddi4 | = 0xa87f b351 | 0x6666 eeaa
D3 O0x45ef 2ba3
tail
e
Will these addresses ROB

ever be equal to
0x10ef dd14?

LD6: Potential RAW with stores whose address is unknown - wait
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Memory Dependence

Prediction and Speculation
S EEE— s

1 Prediction

“*We can optimistically assume that there is no
dependence (it is the only assumption that makes
us gain time and the opposite assumption never leads
to a functional mistake...)

JSpeculation

“If there was a dependence, every data dependent
instruction should be squashed; independent
instructions were actually correctly executed

“If we accept to squash all following instructions, this
situation is not qualitatively different from what we
have seen for other cases = ROB
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Alias Prediction

 One could certainly do better than simply assuming that any
potential RAW through memory is not a RAW (= simple static
dependence prediction)

A The goal is to reduce the probability of squashing and replaying (if
squashing costed nothing, the static prediction would be ok, but
squashing almost invariably has a cost—and definitely in terms of

energy)

[ Essentially one could build dynamical predictors similar in spirit
to branch predictors (the intuition is that dependences are program
specific but often stable during program execution) - learn from
history and remember what happens on previous visits of a load

 In fact, one could even predict a specific dependence (alias
prediction—that is, on which store a given load depends) and use
it to bypass memory before addresses are known
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Prediction & Speculation
S EEE— s

1So far:

“*Precise exceptions
“*Branches
“+*Dependences in memory

What's next?
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Predicting the Next Miss?
Prefetching | and D into the Cache

JCaches partially reduce memory latency, OO0
execution partially hides memory latency

JdWhat to do if there is a significant # of misses?

% Misses in all cache levels need hundred(s) of cycles
%000 may not be enough to hide this Nonbinding prefetch

Idea ;

Fetch data into the cache
ahead of processor demanding it
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Prefetching

Prediction and Speculation
S EEE— s

1 Prediction

<*What and when to get from memory

% As usual, exploit typical behavior (e.g., programs
are sequences of instructions) and learn from
execution history (e.qg., discover access stride)

JSpeculation

% Since we are putting data in the cache (which is not
architecturally visible), nothing to do to rollback

+ Still, prefetching has a cost (besides energy, it
consumes memory bandwidth) and could be
damaging (leads to eviction of useful stuff)
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Prefetchers and Memory Hierarchy

No influence on the
processor state -

prefetching is this
not so much a

business of the !

core but of the

caches //7
12 $

-

Typical placement

of prefetchers
(usually employing

core core core
i i
L1 L1 L1 L1 L1
I$ D$ I$ D$
i i3
L2 $ L2 $
! !
L3 $
;

different strategies)
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Prefetching

Prediction and Speculation
S EEE— s

1 Prediction

<*What and when to get from memory

% As usual, exploit typical behavior (e.g., programs
are sequences of instructions) and learn from
execution history (e.qg., discover access stride)

JSpeculation

% Since we are putting data in the cache (which is not
architecturally visible), nothing to do to rollback

< Still, prefetching has a cost (besides energy, it
consumes memory bandwidth) and could be
damaging (leads to eviction of useful stuff)
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Prefetching

Coverage and Accuracy
B
JCoverage: How many misses prefetching
removes?

JAccuracy: How many prefetched cache lines
are useful over all prefetched lines?

Sort of a trade-off:

% prefetching very aggressively improves coverage
but reduces accuracy - pollutes the cache

% prefetching conservatively may improve accuracy
but reduces coverage - little benefit
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Similar to huge
cache lines?

Next-Line Prefetching

Simplest intuition: f\
“»If cache line X is a miss, load X but also X+1

. . . What?
] Easiest scheme, no “intelligence”

JdHow to implement it? Lookahead?

Do not load X+1 immediately but wait until the
processor asks for an instruction some “fetch-ahead
distance” from the end of the line

When?

Fetched TStrUCt'O” _Fetch-ahead distance

word

|
Cache line (instruction cache)
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Next-N-Line (or Stream) Prefetching

d1Is the lookahead inside a cache line enough to

hide the latency of a miss?

!

word

Fetched instruction ¢etch-ahead dista@
. J

1
Cache line (instruction cache)

A The natural extension is, on a request for cache
line X, to prefetch not only X+1 but also X+2,

X+3,... X+N

AN is a critical parameter:
%+ Too small - poor coverage
%+ Too large - poor accuracy



Stride Prefetching

) For instructions or elements of matrix accessed row-
wise, the sequence X, X+1, X+2, etc. is appropriate

J But what about other typical cases?

accessing a field in
accessing a matrix column-wise an array of struct

1 Natural extension: distance (stride) should be >1
< On a request for X, prefetch X+S, X+2S,... X+N-S

142



Stride Prefetching
_—

- Usually takes a few misses to detect and build

confidence in a constant stride:
- Compulsory miss

X

% X+S

@ X+2S
“* X+3S
< X+4S

Request X+4S

- Compulsory miss, S hypothesis
- Compulsory miss, S confirmed
- Compulsory miss, S confirmed again, prefetch
- Hit, S confirmed again, prefetch

address
Last address:

Stride:

Count:

143

X+3S

L

S

T

3

N + X+5S | Prefetch
= > address
> True | Prefetch?

A
Increment

True

o[

Threshold




Stream Buffers

[ There may be various streams mixing (e.g., multiple arrays, etc.)
[ Aggressive prefetching of multiple streams leads to cache pollution

cache

Y+7:S, _ : X+3-5¢
Y+8:S, W | X+4-Sy
Y+9-S, Stream Stream Stream X+5-5¢

: Prefetcher| | Prefetcher Prefetcher
{ FIFO FIFO FIFO
£ y”.
[ e
d Implement multiple Next-N-Line or Stream prefetchers
O Place the prefetched lines in FIFO buffers instead of the cache
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Stream Buffers
I EEEEEII———————.

JOn a miss, check the head of all stream
buffers:

< If match (i.e., found the desired cache line),
op the desired entry from the buffer head,
orefetch the Nt cache line of the series, and
vlace it at the buffer tail

*+»If no match, evict one of the stream
prefetchers (e.g., least successful or least
recently used) and try to build a new stream

145



Prediction & Speculation
S EEE— s

1So far:
“*Precise exceptions
“*Branches
“+*Dependences in memory
*Prefetching

What's next?

146



Dynamic Data Value Prediction
 — o

JExamples:

“» Source Operand Value Prediction: predict
quasi-constant input operands
= Many constant values during program execution
= History table recording last value

% Value Stride Prediction: predict constant
increments across input operands

= History table recording stride between last two
values

‘»load Addresses and Load Values

147



Speculation Is Not Necessarily a
Run-Time Concept
e EE— ey
dDynamic: in hardware, no interaction
whatsoever from the compiler

“*Binary code is unmaodified
dStatic: in software, planned beforehand
by the compiler

“*Binary code is written in such a way as to do

speculation (with or without some hardware
support in the ISA)
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Static Control Speculation

Example
e EE— ey

JWe need to compute:
if (A==0) A=B; else A=A+4;

dIn assembly:

Lw R1, O (R3) ; load A
BNEZ R1l, L1 ; test A, possibly skip then
Lw Rl1, 0 (R2) ; ‘then’ clause: load B
J L2 ; skip else
Ll1: ADD R1l, R1, 4 ; ‘else’ clause: compute A+4
L2: SW O(R3), R1 ; store new A

JIf we know that the ‘then’ clause is almost
always executed, can we optimise this code?



Static Control Speculation

Example
e EE— ey

JWe could speculatively start earlier to load B into

another register and, if needed, squash the
value with the right one

dIn assembly:

Lw R1, O(R3) ; load A

Lw R14, O (R2) ; speculative load B

BEQZ R1l, L3 ; test A, possibly skip else

ADD R14, R1, 4 ; ‘else’ clause: compute A+4
L3: SW O0(R3), R1l4 ; store new A

JAdvantages: now we load B while the test is
performed (= in parallel)

JAny problem? As usual: exceptions...
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Exceptions and

Static Speculation
S EEE— s

dSome ways to handle exceptions in
(software) speculative execution:

s Static renaming. Hardware and operating
systems cooperatively ignore exceptions

“* Poison bits: Mark results as speculative and
delay exception at first use

s Speculative instructions: Mark instruction as
speculative and do not commit the result until
speculation is solved
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Static Renaming and

Hardware-Software Cooperation
S EEE— s
- Back to our example:

Lw R1, O(R3) ; load A

Lw R14, 0O (R2) ; speculative load B

BEQZ R1l, L3 ; test A, possibly skip else

ADD R14, R1, 4 ; ‘else’ clause: compute A+4
L3: SW O0(R3), R1l4 ; store new A

1 OS “helps” with two policies:

% Nonterminating exceptions (e.g., Page Fault): resume
independently from speculativeness - performance penalty, but
execution ok

% Terminating exceptions (e.g., Divide by Zero): ignore and return
an undefined value - if it was speculated, it will be unused

 Problem: nonspeculative terminating exceptions?
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Static Renaming and Poison Bits
S EEE— s
1 Special marker for speculative instructions:

Lw R1, O(R3) ; load A
LW* R14, 0O (R2) ; speculative load B
BEQZ R1l, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4
L3: SW O(R3), R1l4 ; store new A; report exceptions

 The processor knows the load is speculative and turns
on R14's Poison Bit if it raises a terminating exception,
and suppresses the exception

1 The add, if executed, resets the R14’s Poison Bit

J When R14 is used, a deferred terminal exception is
raised if its Poison Bit is set
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Example:
Speculative Loads in Itanium ()

[ Goal: move loads as early as possible, even speculatively before
preceding branches (i.e., without being sure they are really needed)

<some code>
(pl) br.cond somewhere
// -—-—-———- barrier

1d rl = [r2] Exceptions?

<some code using rl>

// load could be speculated
// if old value rl not needed
<some code> // <- neither here nor

(pl) br somewhere // in “somewhere”

<sdme code using // but..
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Example:

Speculative Loads in Itanium (ll)

[ Speculative loads and deferred exceptions to explicit compiler-
generated fix-up code

1d.s rl = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit
<some code>
<some code using rl> // NaT is propagated in further
// calculations, which also
// defer exceptions
(pl) br.cond somewhere

// -——-—- barrier
<some more code using rl>
chk.s rl, fix code rl // call exception handler if needed

// to fix-up execution
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Static Data Dependence
Speculation (l)

 Potential RAW dependencies through memory are to be
conservatively assumed as real dependencies - Loss of useful
reordering possibilities

[ Goal: move loads as early as possible, even speculatively before
preceding stores (i.e., without being sure that the value is right)

<some code>

st [r3] = r4

/] —-—-=-=--- barrier

1d rl = [r2]

<some code using rl>

// load could be speculated.

// .but if r2==r3, rl is WRONG!
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Static Data Dependence
Speculation (ll)

[ Speculative Loads get executed but mark the destination register as
“speculatively” loaded and track subsequent stores for a conflict

l1d.a rl = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit
<some code>
<some code using rl> // NaT is propagated in further
// calculations
st [r3] = r4 // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads
// —-————- barrier
<some more code using rl>
chk.a rl, fix code rl // if violated RAW dependence, call

// special fix-up routine

O Important advantage because loads (slow operations) can now be
started earlier

157



Predicated (= Guarded) Execution
S EEE— s
1 A special form of static control speculation?

"I cannot make a good prediction? I will avoid gambling
and will do both”

1 A bit more than that: removes control flow change
altogether (see lectures on statically scheduled
Processors)

- Not always a good idea: compiler trade-off

< (Almost) free if one uses execution units which where not used
otherwise (e.g., because of limited ILP)

< Not free at all in the general case: more than needed is always
executed
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Types of Prediction & Speculation
e

Dynamic (by the hardware) Static (by the compiler)

OO0 execution and reordering

Exceptions | OImprecise exceptions in DBT —
(e.g., Transmeta Crusoe)

dTrace Scheduling
CHyperblocks

Control CBranch Prediction IPredication
Speculative Loads (e.g., Itanium)
Data :
Availability AVirtual memory —
Data (Load/Store Queues Advanced Loads (e.g., Itanium)
Dependence !
Data Value | — Dynamic compilers (e.g., DyC,

Calpa)

Not all of these are traditionally called “speculation”!
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References on Prediction &

Speculation

S EEEEE—
2 AQA 5% ed., Chapter 3 and Appendix H
1 PA, Sections 4.3 and 5.3

1. E. Smith, A Study of Branch Prediction Strategies,
Eight International Symposium on Computer Architecture
(ISCA), 135-48, May 1981
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Simultaneous Multithreading

(How do | fill my issue slots?!...)



Sources of Parallelism

 Bit-level
» Wider processor datapaths (8>16>32->64...)
 Word-level (SIMD)
%+ Vector processors
% Multimedia instruction sets (Intel's MMX and SSE, Sun’s VIS, etc.)
A Instruction-level
% Pipelining
> Superscalar
% VLIW and EPIC
 Task- and Application-levels...
% Explicit parallel programming
% Multiple threads
%+ Multiple applications...

L)

4

D)

L)

4
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Simple Sequential Processor
e EE— ey

cycles

163



Pipelined Processor
e EE— ey

op1
op 2

cycles

op 3
op 4

op 5
op 6 (br)
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Superscalar Processor

functional units

cycles

o

©

AN

/ I
//
o
©
Ul
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00O Superscalar Processor

functional units

op1l ,0p 2
op 4 \7L‘*~1\

j’ = 0op>5
op 3 Nop6(br)

cycles

op 11
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Speculative Execution
S EEEEE—

functional units

v

op1l op 2
op 4
op 10 ? op 5
" op 3 op 6 (br)
)
9 op7/?
(@)
op 87
op9°? |
op 11

v| op12 op 13
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Limits of ILP

cycles

functional units

v
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op1l op 2
op 4
op10°? op 5
op 3 op 6 (br)
op/?
op 87
op9°?
op 11
op 12 op 13




Sources of Unused Issue Slots

Percent of Total Issue Cycles

h ) ~J o0
<o < o o o
: - . i —

................................
messasanamaceateNrEnEnEE aEREAEEiELeARtAReEsmmaaRsRResnsd L

.......................
i

alvinn

§ memory conflict

doduc TERRTRRELE .
eqntoft long fp
espresso R, short fp
forpr R B T T long integer
> hydro2d ‘ i o ———— el ﬁ short integer
%_ | 1| | G o ‘ R RS load delays
% Zi?f:ﬁi , Lﬁ% S ——— 1 | control ha'zards. |
S sy T 7 T FEf] | branch misprediction
ora L R ' S RN BA dcache miss
su2cor - FHNEE E icache miss
SWIm EE dtlb miss
tomcatv
. . processor busy
composite et
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Horizontal and Vertical Waste

cycles

170

functional units

v

op1 op 2
op / p
op 3 op 4 /
/
op 11 X op 10
~_ | % | 4 /| op5
h /

~_ N\ |/
N\ //

Horizontal Waste

\
%

Vertical Waste

61%

Source: Tullsen et al.,, © IEEE 1995
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Multithreading:
The Idea

Issue

future

Rather than enlarging the depth of
the instruction window (more
speculation with lowering

. : : Issue
confidence!), enlarge its “width” .

= fetch from multiple threads!

ova ¢




Basic Needs of a

Multithreaded Processor
- ]

JProcessor must be aware of several
independent states, one per each thread:
“*Program Counter
“*Register File (and Flags)

“*(Memory)

JEither multiple resources in the processor

or a fast way to switch across states
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Thread Scheduling
e EE— ey

When one switches thread?
Which thread will be run next?

dSimple interleaving options:
“*Cycle-by-cycle multithreading
= Round-robin selection between a set of threads

“Block multithreading

= Keep executing a thread until something happens
» Long latency instruction found
» Some indication of scheduling difficulties
» Maximum number of cycles per thread executed
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Cycle-by-cycle Interleaving
(or Fine-Grain) Multithreading

functional units

v

context switches

op1l op 2 op 5
op1l op 2
op 5 op 2 op1l
0 op 3 op 4 op 6
_% op 3 op 7 op 4
op 11 op 10 op 8
op 5 op 10

op 7 op 4
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Block Interleaving (or Coarse-Grain)

Multithreading

cycles

functional units

v
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op1l op 2 op 5
op 3 op 4
op 6
op 8
op1l op 2
op 3 op /7 op 4
op 6 ‘

context switches



Fundamental Requirement
S EEE— s

JKey issue in general-purpose processors
which has prevented for many years
multithreaded techniques to become
commercially relevant

It is not acceptable that single-thread
performance goes significantly down
or at all
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Problems of Cycle-by-Cycle

Multithreading
B e I

1 Null time to switch context
=>» Multiple Register Files

No need for forwarding paths if threads supported are
more than pipeline depth!
=» Simple(r) hardware

Fills well short vertical waste (other threads hide
latencies ~ no. of threads)

A Fills much less well long vertical waste (the thread is
rescheduled no matter what)

A Does not reduce significantly horizontal waste (per
thread, the instruction window is not much different...)

M Significant deterioration of single thread job
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Block Interleaving Techniques

Block Interleaving

/\

Adapted from: Silc et al., © Springer 1999

Static Dynamic >
Explicit Switch  Implicit Switch Explicit Switch Implicit Switch
Switch-on-Load Conditional-Switch Switch-on-Miss
Switch-on-Store Switch-on-Use
Switch-on-Branch (a.k.a. Lazy-Switch-on-Miss)

Switch-on-Signal
(interrupt, trap,...)
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Problems of Block Multithreading
 — o

dScheduling of threads not self-evident:

“*What happens of thread #2 if thread #1 executes
perfectly well and leaves no gap?

“ Explicit techniques require ISA modifications = Bad...
More time allowable for context switch

Fills very well long vertical waste (other threads
come in)

N Fills poorly short vertical waste (if not sufficient
to switch context)

N Does not reduce almost at all horizontal waste
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Simultaneous Multithreading (SMT):
The Idea

functional units

v

op 1 op 2 op 5 op1
op 2

cycles
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Several Simple Scheduling
Possibilities

JPrioritised scheduling?

’-

“*Thread #0 schedules freely

*Thread #1 is allowed to use #0 empty slots

*Thread #2 is allowed to use #0 and #1
empty slots, etc.

JFair scheduling?

“All threads compete for resources

“If several threads want the same resource,
round-robin assignment

\J

4

L)

L/

4

L)

L/
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Superscalar Processor

Instruction | PC

Fetch & Decode Unit

(Multiple Instructions per Cycle)

Multiple Buses
/

A 4

A 4

A 4

}

/4

Reservation Reservation || Reservation || Reservation
Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘
!
. Branch Load/Store
ALU 1 ALU 2 FP Unit Unit Unit
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Register File

\ 4

Commit Unit Iﬁ-

(Multiple Instructions per Cycle)

Multiple Buses
Vi

4




Reorder Buffer
I EEEEEII———————.

from
F&D Unit

tail

0x1000 000c
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MUL2 | $£5 222

| !

PlC Tig Reg%ster Addlress Value
0
0
1 [0x1000 0004 — | $£3 0x627f ba5a
1 [0x1000 0008| ALU1 Oxa87f b351 ?2??
1
0

Register Renaming
(between fetch/decode and commit)

from EUs

head to MEM

and RF



What Must Be Added to a

Superscalar to Achieve SMT?
S EEEEE—

) Multiple program counters (= threads) and a A
policy for the instruction fetch unit(s) to decide ™
which thread(s) to fetch LY

1 Multiple or larger register file(s) with at least as
many registers as logical registers for all threads

- Multiple instruction retirement (e.q., per thread
squashing) "
=» No changes needed in the execution path

And also:

 Thread-aware branch predictors (BTBs, etc.)

1 Per-thread Return Address Stacks
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SMT Processor as a Natural

Extension of a Superscalar

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

=

A 4

A 4

A 4

—
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Register File(s)

Reservation Reservation || Reservation || Reservation
Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘ ‘ Stn. ‘
ALU 1 ALU 2 FP Unit Branch [|Load/Store
Unit Unit
Commit Unit

(Multiple Instructions per Cycle)




Reorder Buffer Remembers the
Thread of Origin

 Some changes to the reorder buffer in the Commit Unit—e.qg.:

from from EUs
L T l
PC Thread Tag Register Address Value
head to MEM
0x1000 0004 E_ 0x627f basa [ o =]

0x1000 000c

tail

ORI |O
o
X
ND
o
o
—
—
ND
w
AN
E
™ e
H
w
")
")
")

Architectural Register Identifier:
Reg # + Thread #
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Reservation Stations

J Reservation stations do not need to know which thread an
instruction belongs to

J Remember: operand sources are renamed—physical regs, tags, etc.

from from
F&D Unit v v v v v EUs and RF
Op Tagl Tag2 Argl Arg2
Thread
ALU1: (] |addd| — | MUL3 |0xa87f b351 22?2 [ 422
ALU2: | 1 [subd| ALU1 — 2972 Oxffff feel [ Thread
?
ALU3: #1271
\ 4 i

ALU

v

vy
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Does It Work?!
- ]

Fetch+Decode throughput = 8 IPC

Unmodified Superscalar

Throughput (Instructions Per Cycle)
Lo
|

1 1 ] ] ]
2 4 6 8

188 Number of Threads

Source: Tullsen et al.,, © IEEE 1996



Main Results on Implementability

SMT vs. Superscalar
S EEE— s

From [TullsenJun96]:
dInstruction scheduling not more complex

JRegister File datapaths not more complex (but
much larger register file!)

dInstruction Fetch Throughput is attainable even
without more fetch bandwidth

JUnmodified cache and branch predictors are
appropropriate also for SMT

ASMT achieves better results than aggressive
superscalar
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Where to Fetch?
- ]

 Static solutions: Round-robin
<+ Each cycle 8 instructions from 1 threac
“Each cycle 4 instructions from 2 threads, 2 from 4,...
% Each cycle 8 instructions from 2 threads, and forward
as many as possible from #1 then when long latency
instruction in #1 pick rest from #2
dDynamic solutions: Check execution queues!
< Favour threads with minimal # of in-flight branches
< Favour threads with minimal # of outstanding misses

< Favour threads with minimal # of in-flight
instructions

% Favour threads with instructions far from queue head




What to Issue?

 Not exactly the same as in superscalars...

% In superscalar: oldest is the best (least speculation, more dependent
ones waiting, etc.)

% In SMT not so clear: branch-speculation level and optimism (cache-hit
speculation) vary across threads

[ One can think of many selection strategies:
% Oldest first
%+ Cache-hit speculated last
%+ Branch speculated last
% Branches first...

 Important result: doesn’t matter too much!

= Issue Logic (critical in superscalars) can be left alone
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Importance of Accurate Branch

Prediction in SMT vs. Superscalar
e EE— ey

JReduce the impact of Branch Prediction was one
of the qualitative initial motivations

dResults from [TullsenJun96]:

“ Perfect branch prediction advantage
= 2590 at 1 thread
= 15% at 4 threads
= 90/ at 8 threads

<+ Losses due to suppression of speculative execution
= -79%b0 at 8 threads
= -389% at 1 thread (= speculation was a good idea...)
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Bottlenecks
Sources of Unused Issue Slots

Instructions per cycle
Instructions per cycle

3 .
28 33 1 2 7 wWriteback ports

Completion queue

d Completion queue not very relevant (remember: this is out of the
execution path...)

J Rename register count important
[ Most critical: number of register writeback ports

SMT for utilisation rate (EUs) not bandwidth!...

193
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Bottlenecks

 Fetch and memory throughput
are still bottlenecks
% Fetch: branches, etc.
%+ Memory not addressed
 Performance vs. # of rename

registers (8T) in addition to
the architectural ones

*» Infinite: +2%

ref.

-1%

-39, 1 - | | T T

-6% Threads

 Register file access time likely
limit to # of threads

I
|
o

Throughput (IPC)
(WS ]
{

0:00
—
o

- O
&)

}

J/
000

0:0
o O
S8

0:0
N
o

IPC vs. # threads
200 physical registers

Source: Tullsen et al.,, © IEEE 1996



Performance (IPC) per Unit Cost

2
1,81
P 1.5" - " - :

erformance by
cost, normalized "4

to a scalar 21

processor L N A

0,8- R
0,64
0,4-

0,2

0

Source: Silc et al., © Springer 1999

Number of
threads

 Superscalars are cheap only for relatively small issue bandwidth,
then quickly down

O SMT improves significantly the picture already with 2 threads and
maximum moves to larger issue bandwidths with more threads
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Introduction of SMT

in Commercial Processors
P

dCompaqg Alpha 21464 (EVS8)
4T SMT
“*Project killed June 2001
dIntel Pentium IV (Xeon)
2T SMT

“*Availability since 2002
(already there before, but not enabled)

+10-30% gains expected
ASUN Ultra III
“»2-core CMP, 4T SMT
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Intel SMT: Xeon Hyper-Threading
Pipeline

Uop L2 Cache Uo
duplicated _ P
resources \rFemh 5 Queue Access . Queue. Decode . Queue.  Fill . Queue
Front-end or
(TC hit) (TC miss) : s 5
..; _.; Decode + + _}
/ Trace \ Trace
freelvy shared Cache i : Cache
reely share ) . :
resources ressol:t)J“rtces time-shared
resources
Uop Register Register
Queue Rename: Queue  Sched  Read : Execute :L1 Cache Write : Retire
E : : Store : 5
—>
000 —>
Execution

o Eﬁﬂ

Ly : ! Re-Order
Registers L1 DCache Registers Buffer
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Intel SMT: Xeon Hyper-Threading
Switching Off Threads

- What happens when there is only one thread? What
does the OS when there is nothing to do? Ahem...

=» Four modes: Low-power, STO, ST1, and MT

- Arch State

- Arch State Arch State || Arch State I

Processor Execution
Resources

(a) sT0-Mode Halt1 (b) MT-Mode a|t0 (c} ST1- Mode

Low-Power Mode
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Intel SMT: Xeon Hyper-Threading

Goals and Results

[ Minimum additional cost: SMT = approx. 5% area

[ No impact on single-thread performance
%+ Recombine partitioned resources

1 Fair behaviour with 2 threads

O No Hyper-Threading B Hyper-Threading Enabled ‘

1.4

1.2 -:. -
1 -

0.8

0.6
0.4

0.2

Webserver Webserver Server-side Java
Workload (1) Workload (2) workload

Source: Marr et al., © Intel 2002



And Now, What’s Next?
e EE— ey

dKey ingredients for success so far:

< Maximise compatibility, no info from programmers
beyond straight sequential code and coarse threads

< Aggressive prediction and speculation of anything
predictable

< Use irregular, fine-grained parallelism (ILP): it is
“easier” to extract, can be done at runtime,...
JdProblems:
“*Branch prediction accuracy hard to improve
“*Hard to exploit ILP any further within a thread
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References on Simultaneous

Multithreading
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2 AQA 5t ed., Chapter 3
1 PA, Sections 6.3, 6.4, and 6.5
 CAR, Chapter 5—Introduction

d D. M. Tullsen et al., Exploiting Choice: Instruction Fetch
and Issue on an Implementable Simultaneous
Multithreading Processor, ISCA, 1996

A H. Marr et al., Hyper-Threading Technology Architecture
and Microarchitecture, Intel Technology Journal, Q1,
2002
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