
Advanced Computer Architecture
—

Part I: General Purpose
Exploiting ILP Dynamically

paolo.ienne@epfl.ch

1
ILP? The Traditional Way

(Let’s Make It Fast!)

Speed: Main Goal in General
Purpose Computer Architecture

 Reduce delay per gate  Technology (~ x1.2/year)
 Improve architecture  Parallelism (~ x1.3/year)

3

Architectural and organisational ideas
have been the main performance drivers

since the mid-1980s until the 2000s

So
ur

ce
: H

en
ne

ss
y

&
Pa

tte
rs

on
, ©

 E
lse

vie
r

20
19

Clock Rate
Does Not Grow Much (Anymore!)

4

So
ur

ce
: H

en
ne

ss
y

&
Pa

tte
rs

on
, ©

 E
lse

vie
r

20
19

Sources of Parallelism

 Bit-level
 Wider processor datapaths (8163264…)

 Word-level (SIMD)
 Vector processors
 Multimedia instruction sets (Intel’s MMX and SSE, Sun’s VIS, etc.)

 Instruction-level
 Pipelining
 Superscalar
 VLIW and EPIC

 Task- and Application-levels…
 Explicit parallel programming
 Multiple threads
 Multiple applications…

5

This lesson:
ILP = Instruction Level Parallelism

6

Starting Point (Programmer Model)

Sequential multicycle processor

Cycles

Instructions

1:

2:

3:

ILP?

Instructions

Cycles

?
Standard

7

8

First Step:
Pipelining

Simplest form of Instruction Level
Parallelism (ILP): Several instructions are
being executed at once

IF ID EX WB
IF ID EX MEM

IF ID EX MEM WB
IF ID

IF ID

Cycles

In
st

ru
ct

io
ns

1:

2:

3:

4:
5:

MEM
WB

EX MEM
EX
WB

9

Simple Pipeline

F D E M1 M2 W

RF

10

Simple Pipelining

Scope for parallelism is limited:
 Control hazards limit the usability of the pipeline

 Must squash fetched and decoded instruction following a branch
 Data hazards limit the usability of the pipeline

Whenever the next instruction cannot be executed, the pipeline
is stalled and no new useful work is done until the “problem” is
solved (e.g., cache miss)

 Rigid sequencing
 Special “slots” for everything even if sometimes useless (e.g.,

MEM before WB)
 Every instruction must be coerced to the same framework
 Structural hazards avoided “by construction”

11

Simple Pipeline with Forwarding

F E M1 M2 W

RF

D

ILP So Far…

Instructions

Cycles

?
Pipelining

Standard
12

13

Dynamic Scheduling: The Idea

Extend the scope to extract parallelism:
divd $f0, $f2, $f4
addd $f10, $f0, $f8
subd $f12, $f8, $f14

Why not to execute subd while addd waits for
the result of divd?

Relax a fundamental rule: instructions can be
executed out of program order! (but the
result must still be correct…)

14

Break the Rigidity of the Basic
Pipelining

 Continue fetching and decoding even and especially
if one cannot execute previous instructions

 Keep writeback waiting if there is a structural hazard,
without slowing down execution

Solution:
 Split the tasks in independent units/pipelines

 Fetch and decode
 Execute
Writeback

 Clearly, instructions will now produce results out-of-
order (OOO)

15

Dynamically Scheduled Processor

F D

ALU

ROB W

RF

MEM
(3)

RS

RS

F D E/M1/… W

Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still

required?
WAW is a completely new problem—impossible

before; WAR often cannot occur

16

Reservation Stations

 A reservation station checks that the operands are available (RAW) and that
the Execution Unit is free (Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

17

18

Reservation Stations

Reservation
Station

Fetch&Decode Unit and Register File
(1) Fetched operation descriptions and

(2a) known operands (from RF)
or (2b) source-operation tags

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Dependent Execution Unit
(1) Description of operations ready to execute
with (2) corresponding tags and (3) operands

Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still

required?
WAW is a completely new problem—impossible

before; WAR often cannot occur

19

WAR and WAW Data Dependences

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f5, 10

addd has a RAW dependence on divd
subd has a WAR dependence on addd
adddi has a WAW dependence on divd

20

In-order Completion

Simple pipelines have no WAR and WAW
hazards by construction

EX5EX4IF ID EX1 WB

IF ID EX MEM

IF ID EX MEM WB

MEM

WB

EX2 EX3

IF ID EX MEM WB

EX

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10

21

Out-of-order Completion

Dynamic pipelines may create WAW hazards

divd $f0,$f1,$f2

addd $f3,$f0,$f4

subd $f4,$f5,$f6

adddi $f0,$f5,10

IF ID EX1

IF ID

IF ID EX WB

EX2 EX4

IF ID EX

EX5EX3 WB

EX WB

WBWB

EX

22

Register Renaming

WAW and WAR dependences are also called
name dependences: they do not carry a value
between to instructions

Often created by compilers to reuse the same
registers

Can be removed by avoiding the use of the
same “name”  rename the destination
register whenever a new value is created

Both the compiler (statically) and the processor
(dynamically) can do that

23

Register Renaming

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4, $f5, $f6

adddi $f0, $f4, 10

divd $f0, $f1, $f2

addd $f3, $f0, $f4

subd $f4b, $f5, $f6

adddi $f0b, $f4b, 10

24

Reservation Stations

Unavailable operands are identified by the name
of the reservation station in charge of the
originating instruction

Implicit register renaming, thus removing
WAR and WAW hazards

New results are seen at their inputs through
special result bus(es)

Writeback into the registers can be done in-
order or out-of-order

25

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

26

27

Out-of-order Commitment and
Exceptions

Exception handlers should know exactly where a
problem has occurred, especially for
nonterminating exceptions (e.g., page fault)
so that they handle the event and resume
exactly where the exception occurred

Of course, one assumes that everything before
the faulty instruction was executed and
everything after was not

With OOO dynamic execution it might no longer
be true…

Precise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

Imprecise
andi $t4, $t2, 0xff
andi $t5, $t4, 0xff
addi $v0, $t5, 1
srl $t2, $t2, 8

 lw $t3, 8($t6)
andi $t4, $t3, 3
addi $t0, $t0, 4
addi $t1, $t1, 4

A Problem with Exceptions…

 Precise exceptions
 Reordering at commit; user

view is that of a fully in-
order processor

 Imprecise exceptions
 No reordering; out-of-order

completion visible to the
user

 The OS/programmer must
be aware of the problem
and take appropriate action
(e.g., execute again the
complete subroutine where
the problem occurred) Generally unacceptable in

contemporary systems
(e.g., virtual memory, I/O
interrupts, unsupported

instructions)28

29

Reordering

Fundamental observation: a processor can
do whatever it wants provided that it gives the
appearance of sequential execution (i.e., the
architectural machine state is updated in
program order)

New phase: COMMIT or RETIRE or GRADUATE
(besides the usual F, D, E, W)

This observation is fundamental because it
allows many techniques (precise interrupts,
speculation, multithreading, etc.)

Reordering Instructions
at Writeback

 Needs a reorder buffer in the Commit Unit

to MEM
and RF

from
F&D Unit

0
0
0
1
0
0

Register Address ValueTag

from EUs

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

The “external” and “internal”
identifiers of the instruction

The destination of the result:
register or memory address

The result,
once available

Was there an
exception?

30

31

Reorder Buffer

Commit Unit
(Reorder Buffer)

Fetch&Decode Unit
(1) Fetched-operation tags in original

order, (2) destination register or
address, and (3) PC

All Execution Units
(1) Tags of the executed operations

and (2) corresponding results

Register File and Memory
For each instruction, in the original fetch order,

(1) destination register or address and (2) value to write

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Computation advances
independently from machine

state updates

Machine state
is updated in

order

32

Problems to Solve

Structural Hazards
Are the required resources available?
New problem: previously handled by rigid pipeline

RAW Data Hazards
Are the operands ready to start execution?
Old problem

WAR and WAW Data Hazards
The new data overwrite something which is still

required?
WAW is a completely new problem—impossible

before; WAR often cannot occur

33

Committing Instructions (1/4)

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3
34

Committing Instructions (2/4)

0
0
0
0
0

0

Register Address ValueTag

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Wait until the oldest instruction has its result
35

Committing Instructions (3/4)

0
0
0
0
0

0

Register Address ValueTag

0x98cd 76a2

$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x98cd76a2 to memory location 0xa87fb351
36

Committing Instructions (4/4)

0
0
0
0
0

0

Register Address ValueTag

$f5 0x7677 abcd0x1000 000c

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0xa2cd374f to register $f5
37

Reordering and Precise Exceptions

How does this help with exceptions?
When a synchronous exception happens, we do

not report it but we mark the entry
corresponding to the instruction which caused
the exception in the ROB

When we would be ready to commit the
instruction, we raise the exception instead

We also trash the content of the ROB and of all
RSs

38

Reporting Exceptions (1/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

The store MEM1 results in a TLB Miss  We simply record it
39

Reporting Exceptions (2/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3 as if nothing happened
40

Reporting Exceptions (3/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???
$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Now raise the TLB Miss exception at location 0x10000008
41

Reporting Exceptions (4/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???0xa87f b3510x1000 0008

PCExcpt.

tail

0
0

head

But also squash all instructions which followed the exception
42

Reservation Stations

 A reservation station checks that the operands are available (RAW) and that
the Execution Unit is free (Structural Hazard), then starts execution

addd – MUL3 ???1
subd ALU3 – ??? 0xffff fee11

0
Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3: 0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

43

Where do we get the
necessary information

at decode time?!

Decoding and Dependences

When decoding an instruction, we are supposed to put, for
each operand, either a tag or a value in the corresponding
reservation station—but how do we know if we can read
the register file, for instance?!

Possible situations:
 No dependence  Read the value from the RF
 Dependence from an ongoing instruction

 If the value is computed  Get the value from the ROB
 If the value is not yet computed  Get the tag from the ROB

The Reorder Buffer knows of all instructions
not yet committed and of their destination

registers

44

No Dependence

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Looking for $f1? No ongoing instruction will produce it,
hence it is safe to read it from the Register File

45

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Value in the ROB

Looking for $f2? An ongoing instruction has produced it,
hence we should read 0x627fba5a from the ROB

46

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Dependence and Tag in the ROB

Looking for $f5? An ongoing instruction will produce it,
hence we need to use tag MUL2 as found in the ROB

47

0
0
0
0
0

0

Register Address ValueTag

$f3

$f2 0x627f ba5a

0xa87f b351

$f5MUL2 ???0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3ALU3 ???0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Multiple Dependences?

Looking for $f3? Two ongoing instructions produce it
and it is the most recent one which matters (tag ALU3 here)

48

Dependences through Memory

The way we detect and resolve dependences through
memory (a store at some address and a subsequent load
from the same address) is the same as for registers
For every load, check the ROB:
a) If there is no store to the same address in the ROB,

get the value from memory (i.e., from the cache)
b) If there is a store to the same address in the ROB,

either get the value (if ready) or the tag
but there is an additional situation now

c) If there is a store to an unknown address in the ROB
or if the address of the load is unknown, wait!

49

Load-Store Queues

 The fact that there could be a store to a yet-
unknown address in ROB the makes things harder:
 Not only loads need to wait in the memory RS for their

addresses (= waiting for their operands, which is normal RS
business)

 Ready loads (= with known addresses) need to keep checking
the ROB until the address of all preceding stores is known

 In practice, this implies a strong coordination between
the memory RS and the memory (=store) part of
the ROB  All this is thus typically implemented in a
Load-Store Queue (in turn, in fact, better
implemented as individual load and store queues)

 The load queue may not be a queue, after all (see
later)

50

Load-Store Queues

51

ROB

Mem RS
LQ SQ

ROB

Most of the Mem RS
information and logic is now

in the Load and Store
Queues

Most of the ROB information
about stores is now in the
Store Queue, but the ROB

still triggers when to write to
memory

Example of Load Store Queue

52

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

from
EUs and RF

from
EUs and RF

MEMORY

Does not need to
be a queue, in fact

Pointers to the last
preceding stores

Load Queue Functionality

 All ready loads (= those at known addresses) are
checked concurrently

 Each load compares its address with all preceding
store addresses and does (approximately) the following:
 If any of the preceding stores misses the address  do nothing
 If all preceding stores have an address and there is no collision

issue the load if there are available memory ports
 If the load address equals one or more of the store addresses and if the

last of the colliding stores has the value  memory bypass =
load is executed and the returned value comes from the store queue

 If the load address equals one or more of the store addresses and if the
last of the colliding stores has no value yet  do nothing (will be
a memory bypass later)

 This behaviour is essentially that of an RS but with the
additional issue of checking for emerging collisions in the
store queue53

Store Queue Functionality

 Stores are executed only if
1. The address and the data for the store are known (= standard

RS functionality)
2. All preceding stores executed (= in-order commit as ROB)
3. The store is enabled from the ROB (= in-order commit w.r.t.

other instructions in the ROB)
 If any of the tests fail, the store is kept waiting
 This behaviour is essentially that of an RS combined with

the reordering of a ROB

54

Example of Load Store Queue:
Normal RS Behaviour in Load Queue

55

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD3: Unknown read address  wait

Example of Load Store Queue
Potential RAW through Memory

56

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD6: Potential RAW with stores whose address is unknown  wait

Example of Load Store Queue:
RAW through Memory

57

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD4: Known RAW at address 0x627f ba5a  wait

Example of Load Store Queue:
RAW through Memory (bypass)

58

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD1: Known RAW at address 0xa87f b351 
return 0x6666 eeaa without accessing memory

Example of Load Store Queue:
Stores Released by ROB

59

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

0x627f ba5a 0x99ae fdda
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

Oldest store does not commit even if ready  must wait for ROB

As usual, a real
implementation may

be fairly different
from this picture

60

Origins of Reordering

 Robert Tomasulo in 1967 for the IBM System/360 Model 91’s
floating point unit, but no support for precise interrupts

 Smith & Pleszkun on precise interrupts, 1988

So
ur

ce
: S

m
ith

 &
 P

le
sz

ku
n,

 ©
 IE

EE
19

88

61

Second Step:
Dynamic Scheduling

 Tangible amount of ILP now possible
What’s next?!

IF ID EX1 EX2 WB
IF ID EX1 EX2 EX3 EX4 EX5 MEM

IF ID EX1 EX2

EX2
IF ID EX1 MEM WB

IF ID EX1 MEM

Cycles

In
st

ru
ct

io
ns

1:

2:

3:

4:
5:

EX2IF ID EX16:

WB

ILP So Far…

Instructions

Cycles ?

Pipelining

Dynamic
Scheduling

Standard
62

63

Superscalar Execution

Why not more than one instruction
beginning execution (issued) per cycle?
Key requirements are
Fetching more instruction in a cycle: no big

difficulty provided that the instruction cache
can sustain the bandwidth
Decide on data and control dependencies:

dynamic scheduling already takes care of this

Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

64

65

Third Step: Superscalar Execution

IF ID EX1 EX2 EX3 WB
IF ID EX1 EX2 EX3 EX4 EX5
IF ID EX1 MEM WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 EX4 EX5 WB

IF ID EX1 MEM
IF ID EX1 EX2 EX3 WB

IF ID EX1 EX2 EX3 EX4 EX5 EX6 WB

Cycles

In
st

ru
ct

io
ns

1:

2:

3:
4:

5:

6:
7:

8:

MEM

Several Steps in Exploiting ILP

Instructions

Cycles

Pipelining

Dynamic
Scheduling

Superscalar

Standard
66

Intel Nehalem and AMD Barcelona:
Now Oldish Microarchitectures

Intel Nehalem AMD Barcelona

So
ur

ce
: h

ttp
:/

/r
ea

lw
or

ld
te

ch
.c

om
/,

©
 R

W
T

20
08

Intel Skylake Microarchitecture

68

©
 T

he
 L

in
le

y
Gr

ou
p,

 2
01

5

AMD Zen 3 Microarchitecture

69

©
 T

he
 L

in
le

y
Gr

ou
p,

 2
02

0

Apple Firestorm Microarchitecture

70

©
 T

he
 L

in
le

y
Gr

ou
p,

 2
02

1

71

References on ILP

 AQA 5th ed., Appendix C
 CAR, Chapter 4—Introduction
 J. E. Smith and A. R. Pleszkun, Implementation of

Precise Interrupts in Pipelined Processors, IEEE
Transactions on Computers, 37(5):562-73, May 1988

2
Register Renaming

(How Do I Get Rid of WAR and WAW?!…)

73

Register Renaming

 Importance of removing WAR and WAW dependences
with “close-to-ideal” instruction windows (2K entries)
and maximum issue rate (64 per cycle)

So
ur

ce
: A

QA
, ©

 M
or

ga
n

Ka
uf

fm
an

 1
99

6

74

A Little History of (Modern)
Renaming

Source: Sima, © IEEE 2000
First: IBM 360/91 (1967, FP partial renaming)

75

Main Dimensions in Renaming
Policies

1. Scope of register renaming
 Simple: only some classes of registers are

renamed (e.g., integer or FP only)
2. Layout of the renamed registers
 Where are they?

3. Method of register mapping
 Allocation, tracking, and deallocation

4. Rename rate
 How many instructions can be renamed at

once?

76

Where Are the Rename Registers?

Four possibilities:
1. Merged rename and architectural RF
2. Split rename and architectural RFs
3. Renamed values in the reorder buffer
4. Renamed values in the reservation

stations (a.k.a. shelving buffers)

77

Four Possible Locations for Rename
Registers

Source: Sima, © IEEE 2000

78

Dynamically Scheduled Processor

Instruction
Fetch & Decode

Unit

Reservation
Stn.

Load/Store
UnitFP UnitALU

Commit
Unit

Register FileBranch
Unit

Reservation
Stn.

Reservation
Stn.

Reservation
Stn.

Rename
Registers

Architectural
Registers

79

Typical ROB

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

80

Tracking the Mapping: Where is
Physically an Architectural Register?

Source: Sima, © IEEE 2000

Mapping in a
Mapping Table

Mapping in the
Rename Buffer

81

MIPS R10000:
Merged RF with Mapping Table

Remark the complexity of the Mapping Table:
 4-issue processor ( 4x above scheme in parallel)
 16 parallel accesses: 16 read ports and 4 write ports!

So
ur

ce
: Y

ea
ge

r,
©

 IE
EE

19
96

82

Possible States of each Register
in a Merged File

So
ur

ce
:S

im
a,

 ©
 IE

EE
 2

00
0

83

State Transitions in a Merged File

 Initialisation:
 First N registers are “AR”, others “Available”

1. Available  Renamed Invalid
 Instruction enters the Reservation Stations and/or the ROB:

register allocated for the result (i.e., register uninitialised)
2. Renamed Invalid  Renamed Valid

 Instruction completes (i.e., register initialised)
3. Renamed Valid  Architectural Register

 Instruction commits (i.e., register “exists”)
4. Architectural Register  Available

 Another instruction commits to the same AR (i.e., register is
dead)

5. Renamed Invalid and Renamed Valid  Available
 Squashing

84

MIPS R10000:
32 AR, 64 PhR, Merged Register File

So
ur

ce
: Y

ea
ge

r,
©

 IE
EE

19
96

Free Register Table:
Up to 32 empty PhR

Mapping Table:
fD AR  PhR

New PhR
to Hold fD

I-Queue / Resv. Station ROB

Status Table:
Invalid PhR

Previous PhR
Holding fD

fD AR

85

MIPS R10000:
Information Flow

1. Available  Renamed Invalid
 Read new PhR from top of Free Register Table
 Create new mapping LogDest  Dest in the Mapping Table
 Set corresponding Busy-Bit (=invalid) in the Status Table

2. Renamed Invalid  Renamed Valid
 Write PhR Dest indicated in the I-Queue
 Reset corresponding Busy-Bit (=valid) in the Status Table
 Mark as Done in the corresponding entry in the ROB

3. Renamed Valid  Architectural Register
 Implicit (removal of historical mapping LogDest  Dest)

4. Architectural Register  Available
 Free PhR indicated by OldDest in the entry removed from the ROB

5. Renamed Invalid and Renamed Valid  Available
 Restore mapping from all squashed ROB entries (from tail to head) as

LogDest  Dest
 Reset corresponding Busy-Bit (=valid) in the Status Table

86

State Transitions Replaced by
Copying in Stand-alone RRF

 Initialisation:
 All Rename Registers are “Available”

1. Available  Renamed Invalid
 Instruction enters the Reservation Stations and/or the ROB:

register allocated for the result (i.e., register uninitialised)
2. Renamed Invalid  Renamed Valid

 Instruction completes (i.e., register initialised)
3. Renamed Valid  Available

 Instruction commits (i.e., register “exists”)
 Value is copied in the Architectural RF

4. Renamed Invalid and Renamed Valid  Available
 Squashing (no copy to the Architectural RF)

87

State of the Rename Registers in
the Commit Unit (ROB)

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

Renamed InvalidRenamed Valid
Available

88

How Many Rename Registers?

 In-Flight instructions:

 Rename Registers:

 ROB size:

STLDEURSflightin NNNNN +++=−

LDEURSrename NNNN ++≤

flightinROB NN −≤

Note: if strictly < then structural stalls can occur

89

Number of Rename Registers

So
ur

ce
:S

im
a,

 ©
 IE

EE
 2

00
0

90

Actual Choices in Commercial
Implementations

So
ur

ce
:S

im
a,

 ©
 IE

EE
 2

00
0

91

High-End
Processors

in 2009

No renaming
only in

UltraSparc:
Use of register

windows made it
very difficult to

implement
renaming (but

Fujitsu eventually
managed)

Nor in Itanium,
of course…

Source: Microprocessor Report, © Cahners 2009

92

References on Register Renaming

 AQA 5th ed., Appendix C and Chapter 3
 PA, Sections 6.3, 6.4, and 6.5
 CAR, Chapter 5—Introduction
 D. Sima, The Design Space of Register Renaming

Techniques, IEEE Micro, (20):5, Sept.-Oct. 2000
 K. C. Yeager, The MIPS R10000 Superscalar

Microprocessor, IEEE Micro, 16(2):28-40, April 1996

3
Prediction and Speculation

(Don’t Know It? Don’t Wait but Guess…)

94

Prediction & Speculation: The Idea

Some operation takes awfully long?
The processor needs the result to proceed?
To fetch the next instruction, one needs to know

which one must be fetched
To perform a computation, one needs the operands

Don’t wait!!!

1. Make a guess ( Predict) and
2. Proceed tentatively ( Speculate)

95

General Problems

1. How do I make a good guess?
 Either one outcome is typical and far more frequent
 Static prediction

 Or I need to remember some history
 Dynamic prediction

2. What do I do if the guess was wrong?
 Undo speculatively-executed instructions (“squash”)
 May cost nothing—e.g.,

 Squash some results
 May cost something—e.g.,

 Empty pipelines
 Restore saved state
 Execute compensation code

Prediction & Speculation

Have we already seen a form of prediction and
speculation in this course?

Precise exceptions

Prediction: For every instruction, we have
guessed that there will be no exception (static
prediction)

Speculation: In case of exception we have
used the ROB to squash all instructions after the
faulty one raising the exception

96

Precise Exceptions (1/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

The store MEM1 results in a TLB Miss  We simply record it
97

Precise Exceptions (2/4)

0
0
0
1
0

0

Register Address ValueTag

$f3 0x627f ba5a

MEM1 ???
$f5MUL2 ???

0xa87f b351

0x1000 000c

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Write 0x627fba5a to register $f3 as if nothing happened
98

Precise Exceptions (3/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???
$f5 0x7677 abcd

0xa87f b351

0x1000 000c

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1000 0010

0 MEM3 ???0x3746 09fa0x1000 0014

head

Now raise the TLB Miss exception at location 0x10000008
99

Precise Exceptions (4/4)

0
0
0
1
0

0

Register Address ValueTag

MEM1 ???0xa87f b3510x1000 0008

PCExcpt.

tail

0
0

head

But also squash all instructions which followed the exception
100

After a prediction, hold every potential change in
state of the processor (e.g., register values,
memory writes) in a buffer

If the prediction turns out to be correct, let the
content of the buffer affect the state (=
COMMIT)

If the prediction turns out to be wrong, simply
trash the content of the buffer (step 4 above)

Our ROB does just that!
…and once we have it, we can do much more with it!

A General Idea

101

Prediction & Speculation

So far:
Precise exceptions

102

What’s next?

Branch Prediction and Speculation

Prediction
Static: Maybe we can assume that every backward

branch is part of a loop and thus usually taken
Dynamic: Maybe we can observe what happens

during execution and learn
Speculation
In a simple pipeline we may simply fetch and decode

instructions  easy, no state changes
In a complex OOO superscalar we may really execute

instructions speculatively  ROB

103

F

Control Hazards

1000:

1004:

1008:

1012:

beq $r0, $r1, loop

sub $r2, $r0, $r1

Causality violation!
We fetch an instruction before we know which one!

time (cycles)

D E M W
F D E M W

F D E M W
F D E M W

F

Control Hazards Solved
by Stalling the Pipeline

1000:

1004:

1008:

1012:

D E M W
F E M W

D E M W
F D E M

F F D
F

 We can stall the pipeline once it is discovered, after D, that an
instruction was a branch

 If, for instance, the correct address of the next instruction is known
at the end of the E stage, 2 cycles are lost every branch

F

Stalled pipeline

beq $r0, $r1, loop

sub $r2, $r0, $r1

After D of 1000, F of 1004 is
invalidated because it could have

been the wrong instruction

F

Speculative Fetch and Decode

1000:

1004:

1008:

1012:

D E M W
E M W
D E M W

D E M W

F D
F

F

beq $r0, $r1, loop

sub $r2, $r0, $r1

F1000:

1004:

1008:

loop:

D E M W

D E M W

F D
F

F

beq $r0, $r1, loop

sub $r2, $r0, $r1

Speculative F and D, wrongly predicted and thus squashed (simple invalidation in the pipeline)

Speculative F and D, correctly predicted

Branches in the ROB

0
0
0
0
0

0

Register Address ValueTag

$f3 0x627f ba5a

BR3 ???
$f5MUL2 ???

0x1111 ab08

0x1111 ab08

0x1000 0008

0x1000 0004

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

Predicted branches inserted in the ROB with predicted target
107

Actual target is
initially unknown

Branches without Outcome
Block the ROB

0
0
0
0
0

0

Register Address ValueTag

BR3 ???
$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

A predicted branch whose outcome is unknown cannot be committed
108

Correctly Predicted Branches
Are Ignored

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1111 ab08

$f5 0x7677 abcd

0x1111 ab08

0x1111 ab08

0x1000 0008

PCExcpt.

tail

0 $f3 0xa2cd 374f0x1111 ab0c

0 MEM3 ???0x3746 09fa0x1111 ab10

head

BR3 can commit (= do nothing and remove from ROB)
109

=

Mispredicted Branches
Trigger a Squash

0
0
0
0
0

0

Register Address ValueTag

BR3 0x1000 000c0x1111 ab080x1000 0008

PCExcpt.

tail

0
0

head

BR3 triggers a squash and causes fetch to restart at 0x1000000c
110

≠

Branch Prediction and Speculation

Prediction
Static: Maybe we can assume that every backward

branch is part of a loop and thus usually taken
Dynamic: Maybe we can observe what happens

during execution and learn
Speculation
In a simple pipeline we may simply fetch and decode

instructions  easy, no state changes
In a complex OOO superscalar we may really execute

instructions speculatively  ROB

111

112

Branch Prediction

Branch
Predictor

Logic

Branch outcome and
additional info

Current PC

Predicted direction
(Taken/Not Taken)

Predicted target
address

113

Branch Target Buffers

PC

0xa123 fee4
…
…
…

…
…

…

031

One needs to know if a
just fetched and yet

undecoded instruction
is a branch and

what is the destination
(computed branch,
relative address,

return, etc.)

0x1234 5678
0x1235 ef5a

…
…

…
…

…

Target AddressBranch Address

CAM

114

More Complex But Cheaper
Branch Target Buffers

0xa123 fee4
…
…

…
…

…
0x1234 56
0x1235 ef

…

…
…

…

Target Addr.Tag (31..8)

PC (Branch Address)
07831

0x7834 3847
…
…

…
…

…

0x5678 23
0x1235 78

…

…
…

…

Target Addr.Tag (31..8)
0000 0000:

0000 0001:

0000 0011:

1111 1110:

1111 1111:

= Etc.

Typical Cache/TLB
organisation

115

Which Strategy to Predict?

 Static predictions: ignore history
1. Never-taken or always-taken
2. Always-taken-backward (e.g., loops)
3. Compiler-specified, etc.
 Still a form of dynamic control speculation,

because the squashing process is done in
hardware

 Dynamic prediction: learn from history
 Record how often a branch was taken in the

past

116

Which Strategy to Predict
Dynamically?

1. Same outcome as last time
 Keep one bit of history per recently visited branches

 Needs an associative memory  expensive
 Keep one bit of history per hashed address

 Needs only a RAM  inexpensive
 Different branches alias  mistakes, but we are only guessing,

anyway…

2. Same outcome as last few times (inertia)
 Keep a two-bit saturating history counter per hashed

address; use sign as a predictor
 Tuned to for loops: one misprediction is normal (last iteration)

and should not modify the successive prediction (first iteration of
a new execution)

117

Branch History Table

PC (Branch Address)

0
1
1
0

1
0

…

07831

not taken

taken

taken

not taken

taken

not taken

OR

01
10
11
01

10
00

…

not taken

taken

taken

not taken

taken

not taken

0000 0000:

0000 0001:

0000 0010:

0000 0011:

1111 1110:

1111 1111:

One-bit Prediction
Two-bit Prediction

118

Branch History Table

PC (Branch Address)

0
1
1
0

1
0

…

07831

not taken

taken

taken

not taken

taken

not taken

OR

01
10
11
01

10
00

…

not taken

taken

taken

not taken

taken

not taken

0000 0000:

0000 0001:

0000 0010:

0000 0011:

1111 1110:

1111 1111:

One-bit Prediction
Two-bit Prediction

Isn’t there something
missing here?!

Think of caches or
even of BTBs…

?!
?!

Speculation brings us in a whole new world
We do not care to be always right

but only to be right most of the time!

One- vs. Two-Bit
Prediction Schemes

 Simplest one-bit predictor: “do the same as last time”

 Two-bit predictor (saturating counter): adding some “inertia” or
“take some time to change your mind”

119

Not takenTaken

Taken
Taken

Not taken
Not taken

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

“Strong” Prediction“Weak” Prediction

Why?!

Actual outcomes

Predictions

One- vs. Two-bit
Prediction Schemes and Loops

 How many mispredictions for loop2 every iteration of loop1?

120

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

loop1: for (i = 0; i < ROW; i++) {

…do something…

loop2: for (j = 0; j < COL; j++) {

…do something…

}
}

Exotic Prediction Schemes

 Simple two-bit saturating counter

 Modified two bit saturating counter
Two mispredictions  Strong reversal (e.g., UltraSPARC-I)

121

Not takenTaken

Taken

Not taken

Not taken

Taken

Not taken
Not taken

Taken

Taken
Taken

Not taken

Not takenTaken

Taken

Not taken

Taken

Not takenNot takenNot taken

Taken

TakenTaken

Not taken

122

Prediction Accuracy

So
ur

ce
: A

QA
, ©

 M
or

ga
n

Ka
uf

fm
an

 1
99

6

M
is

pr
ed

ic
tio

ns

123

Exploiting Correlation
(two-level or gselect Predictors)

Exploit correlation:
(m,n) Branch Predictor Buffer
A global m-bit predictor uses the

outcome of the last two branches to
select one among four different

predictors

Branch History Register (BHR):
m-bit shift register

Pattern History Table (PHT)
2m standard n-bit predictors

Branch
address

4 bits

Branch
prediction

Branch
outcomes

2 bits

124

Exploiting Correlation
(two-level or gselect Predictors)

Branch
outcomes

Branch
prediction

Branch
address

4 bits

2 bits

Branch
address

4 bits

Branch
prediction

Branch
outcomes

2 bits

McFarling gshare Predictor

125

Branch
prediction

Branch
outcomes

Branch
address

4 bits

2 bits

Branch
prediction

Branch
address

6 bits

6 bits

Branch
outcomes

6 bits

gselect
predictor

gshare
predictor

replace concatenation
with a better hash

function

The Sky (or the Architects’
Ingenuity) Is the Limit…

Tournament predictors
 Combine several predictors (typically local, such as a

simple 2-bit predictor, with global, such as a gshare
predictor)

 Use a selector to guess which would be the best
predictor across the set

 In case of misprediction it is not self-evident how to
update the whole (update the predictors and/or
update the selector?!)…

Tagged hybrid predictors
…

126

127

Return Address Stack

Special elementary case of branch prediction:
Small stack (e.g., 8-16 values)
Each call (CALL, JAL, etc.) pushes a value
Each return (RET, JP $ra, etc.) pops a predicted

return address
Functionally identical to the “real” stack but

avoids any SP manipulation, memory accesses,
argument bypassing, etc.

128

Misprediction Has High Cost  Lots
of Efforts in Improving Accuracy

Pipelines become more and more deep (e.g., up
to 22-24 cycles in Pentium 4)

Issue width grows (typically 3-8)
Large number of in-flight instructions (hundreds)
Many predicted branches in-flight at once
Probability of executing speculatively something

useful reduces quickly

∏=
predall

i
itot pp

_

Apple Firestorm Microarchitecture

129

©
 T

he
 L

in
le

y
Gr

ou
p,

 2
02

1

!!!

Prediction & Speculation

So far:
Precise exceptions
Branches

130

What’s next?

Reminder:
Dependences through Memory

131

0xa87f b351

ALU4
0x627f ba5a

0x10ef dd14

AddressTagA
LD1: 1

0
1
1
0
1

LD2:
LD3:
LD4:
LD5:
LD6:

Load “Queue”

MUL1 0x627f ba5a
ALU3 0xa2cd 374f
ALU1 MUL2

0xa87f b351 0x6666 eeaa
LD3 0x45ef 2ba3

ValueTagV AddressTagA

tail

head

Store Queue

ROB

LD6: Potential RAW with stores whose address is unknown  wait

Will these addresses
ever be equal to
0x10ef dd14?

Memory Dependence
Prediction and Speculation

Prediction
We can optimistically assume that there is no

dependence (it is the only assumption that makes
us gain time and the opposite assumption never leads
to a functional mistake…)

Speculation
If there was a dependence, every data dependent

instruction should be squashed; independent
instructions were actually correctly executed

If we accept to squash all following instructions, this
situation is not qualitatively different from what we
have seen for other cases  ROB

132

Alias Prediction

 One could certainly do better than simply assuming that any
potential RAW through memory is not a RAW (= simple static
dependence prediction)

 The goal is to reduce the probability of squashing and replaying (if
squashing costed nothing, the static prediction would be ok, but
squashing almost invariably has a cost—and definitely in terms of
energy)

 Essentially one could build dynamical predictors similar in spirit
to branch predictors (the intuition is that dependences are program
specific but often stable during program execution)  learn from
history and remember what happens on previous visits of a load

 In fact, one could even predict a specific dependence (alias
prediction—that is, on which store a given load depends) and use
it to bypass memory before addresses are known

133

Prediction & Speculation

So far:
Precise exceptions
Branches
Dependences in memory

134

What’s next?

Predicting the Next Miss?
Prefetching I and D into the Cache

Caches partially reduce memory latency, OOO
execution partially hides memory latency

What to do if there is a significant # of misses?
Misses in all cache levels need hundred(s) of cycles
OOO may not be enough to hide this

Idea
Fetch data into the cache

ahead of processor demanding it

135

Nonbinding prefetch

Prefetching
Prediction and Speculation

Prediction
What and when to get from memory
As usual, exploit typical behavior (e.g., programs

are sequences of instructions) and learn from
execution history (e.g., discover access stride)

Speculation
Since we are putting data in the cache (which is not

architecturally visible), nothing to do to rollback
Still, prefetching has a cost (besides energy, it

consumes memory bandwidth) and could be
damaging (leads to eviction of useful stuff)

136

Prefetchers and Memory Hierarchy

No influence on the
processor state 
prefetching is this

not so much a
business of the
core but of the

caches

137

L3 $

L2 $ L2 $ L2 $

core

L1
I$

L1
D$

core

L1
I$

L1
D$

core

L1
I$

L1
D$

DRAM

Typical placement
of prefetchers

(usually employing
different strategies)

Prefetching
Prediction and Speculation

Prediction
What and when to get from memory
As usual, exploit typical behavior (e.g., programs

are sequences of instructions) and learn from
execution history (e.g., discover access stride)

Speculation
Since we are putting data in the cache (which is not

architecturally visible), nothing to do to rollback
Still, prefetching has a cost (besides energy, it

consumes memory bandwidth) and could be
damaging (leads to eviction of useful stuff)

138

Prefetching
Coverage and Accuracy

Coverage: How many misses prefetching
removes?

Accuracy: How many prefetched cache lines
are useful over all prefetched lines?

Sort of a trade-off:
 prefetching very aggressively improves coverage

but reduces accuracy  pollutes the cache
 prefetching conservatively may improve accuracy

but reduces coverage  little benefit

139

Next-Line Prefetching

Simplest intuition:
If cache line X is a miss, load X but also X+1

Easiest scheme, no “intelligence”
How to implement it? Lookahead?
Do not load X+1 immediately but wait until the

processor asks for an instruction some “fetch-ahead
distance” from the end of the line

140

word

Cache line (instruction cache)

Fetched instruction Fetch-ahead distance

What?

When?

Similar to huge
cache lines?

Next-N-Line (or Stream) Prefetching

Is the lookahead inside a cache line enough to
hide the latency of a miss?

The natural extension is, on a request for cache
line X, to prefetch not only X+1 but also X+2,
X+3,… X+N

N is a critical parameter:
Too small  poor coverage
Too large  poor accuracy

141

Stride Prefetching

 For instructions or elements of matrix accessed row-
wise, the sequence X, X+1, X+2, etc. is appropriate

 But what about other typical cases?

 Natural extension: distance (stride) should be >1
 On a request for X, prefetch X+S, X+2S,… X+N∙S

142

accessing a matrix column-wise
accessing a field in
an array of struct

Stride Prefetching

 Usually takes a few misses to detect and build
confidence in a constant stride:
 X  Compulsory miss
 X+S  Compulsory miss, S hypothesis
 X+2S  Compulsory miss, S confirmed
 X+3S  Compulsory miss, S confirmed again, prefetch
 X+4S  Hit, S confirmed again, prefetch

143

X+3S

S

3

Request
address +

+ =

Increment

Prefetch
address

Prefetch?≥

Threshold

Last address:

Stride:

Count:

X+4S
X+5S

True

2True

Stream Buffers

 There may be various streams mixing (e.g., multiple arrays, etc.)
 Aggressive prefetching of multiple streams leads to cache pollution

 Implement multiple Next-N-Line or Stream prefetchers
 Place the prefetched lines in FIFO buffers instead of the cache

144

cache

memory

FIFO

Stream
Prefetcher

FIFO

Stream
Prefetcher

FIFO

Stream
Prefetcher

X+3∙SX
X+4∙SX
X+5∙SX

…

Y+7∙SY
Y+8∙SY
Y+9∙SY

… ∙

Stream Buffers

On a miss, check the head of all stream
buffers:
If match (i.e., found the desired cache line),

pop the desired entry from the buffer head,
prefetch the Nth cache line of the series, and
place it at the buffer tail
If no match, evict one of the stream

prefetchers (e.g., least successful or least
recently used) and try to build a new stream

145

Prediction & Speculation

So far:
Precise exceptions
Branches
Dependences in memory
Prefetching

146

What’s next?

147

Dynamic Data Value Prediction

Examples:
Source Operand Value Prediction: predict

quasi-constant input operands
 Many constant values during program execution
 History table recording last value

Value Stride Prediction: predict constant
increments across input operands
 History table recording stride between last two

values
Load Addresses and Load Values

148

Speculation Is Not Necessarily a
Run-Time Concept

Dynamic: in hardware, no interaction
whatsoever from the compiler
Binary code is unmodified

Static: in software, planned beforehand
by the compiler
Binary code is written in such a way as to do

speculation (with or without some hardware
support in the ISA)

149

Static Control Speculation
Example

We need to compute:
if (A==0) A=B; else A=A+4;

In assembly:
LW R1, 0(R3) ; load A
BNEZ R1, L1 ; test A, possibly skip then
LW R1, 0(R2) ; ‘then’ clause: load B
J L2 ; skip else

L1: ADD R1, R1, 4 ; ‘else’ clause: compute A+4
L2: SW 0(R3), R1 ; store new A

If we know that the ‘then’ clause is almost
always executed, can we optimise this code?

150

Static Control Speculation
Example

We could speculatively start earlier to load B into
another register and, if needed, squash the
value with the right one

In assembly:
LW R1, 0(R3) ; load A
LW R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A

Advantages: now we load B while the test is
performed ( in parallel)

Any problem? As usual: exceptions…

151

Exceptions and
Static Speculation

Some ways to handle exceptions in
(software) speculative execution:
Static renaming: Hardware and operating

systems cooperatively ignore exceptions
Poison bits: Mark results as speculative and

delay exception at first use
Speculative instructions: Mark instruction as

speculative and do not commit the result until
speculation is solved

152

Static Renaming and
Hardware-Software Cooperation

 Back to our example:
LW R1, 0(R3) ; load A
LW R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A

 OS “helps” with two policies:
 Nonterminating exceptions (e.g., Page Fault): resume

independently from speculativeness  performance penalty, but
execution ok

 Terminating exceptions (e.g., Divide by Zero): ignore and return
an undefined value  if it was speculated, it will be unused

 Problem: nonspeculative terminating exceptions?

153

Static Renaming and Poison Bits

 Special marker for speculative instructions:
LW R1, 0(R3) ; load A
LW* R14, 0(R2) ; speculative load B
BEQZ R1, L3 ; test A, possibly skip else
ADD R14, R1, 4 ; ‘else’ clause: compute A+4

L3: SW 0(R3), R14 ; store new A; report exceptions

 The processor knows the load is speculative and turns
on R14’s Poison Bit if it raises a terminating exception,
and suppresses the exception

 The add, if executed, resets the R14’s Poison Bit
When R14 is used, a deferred terminal exception is

raised if its Poison Bit is set

154

Example:
Speculative Loads in Itanium (I)

 Goal: move loads as early as possible, even speculatively before
preceding branches (i.e., without being sure they are really needed)

<some code>
(p1) br.cond somewhere
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated
// if old value r1 not needed

<some code> // <- neither here nor
(p1) br.cond somewhere // in “somewhere”
// ------ barrier
<some code using r1> // but…

Exceptions?

155

Example:
Speculative Loads in Itanium (II)

 Speculative loads and deferred exceptions to explicit compiler-
generated fix-up code

ld.s r1 = [r2] // speculative loads do not raise
// exceptions but mark the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations, which also
// defer exceptions

(p1) br.cond somewhere
// ------ barrier
<some more code using r1>
chk.s r1, fix_code_r1 // call exception handler if needed

// to fix-up execution

156

Static Data Dependence
Speculation (I)

 Potential RAW dependencies through memory are to be
conservatively assumed as real dependencies  Loss of useful
reordering possibilities

 Goal: move loads as early as possible, even speculatively before
preceding stores (i.e., without being sure that the value is right)

<some code>
st [r3] = r4
// ------ barrier
ld r1 = [r2]
<some code using r1>

ld r1 = [r2] // load could be speculated…
<some code>
st [r3] = r4 // …but if r2==r3, r1 is WRONG!
// ------ barrier
<some code using r1>

NO!

157

Static Data Dependence
Speculation (II)

 Speculative Loads get executed but mark the destination register as
“speculatively” loaded and track subsequent stores for a conflict

 Important advantage because loads (slow operations) can now be
started earlier

ld.a r1 = [r2] // speculative loads are normal
// but mark always the register
// with the additional NaT bit

<some code>
<some code using r1> // NaT is propagated in further

// calculations

st [r3] = r4 // successive stores are checked
// to see if they rewrite locations
// which were object of speculative
// loads

// ------ barrier
<some more code using r1>
chk.a r1, fix_code_r1 // if violated RAW dependence, call

// special fix-up routine

158

Predicated (= Guarded) Execution

 A special form of static control speculation?
“I cannot make a good prediction? I will avoid gambling

and will do both”

 A bit more than that: removes control flow change
altogether (see lectures on statically scheduled
processors)

 Not always a good idea: compiler trade-off
 (Almost) free if one uses execution units which where not used

otherwise (e.g., because of limited ILP)
 Not free at all in the general case: more than needed is always

executed

159

Types of Prediction & Speculation

Dynamic (by the hardware) Static (by the compiler)

Exceptions
OOO execution and reordering
Imprecise exceptions in DBT
(e.g., Transmeta Crusoe)

—

Control Branch Prediction

Trace Scheduling
Hyperblocks
Predication
Speculative Loads (e.g., Itanium)

Data
Availability Virtual memory —

Data
Dependence Load/Store Queues Advanced Loads (e.g., Itanium)

Data Value — Dynamic compilers (e.g., DyC,
Calpa)

Not all of these are traditionally called “speculation”!

160

References on Prediction &
Speculation

 AQA 5th ed., Chapter 3 and Appendix H
 PA, Sections 4.3 and 5.3
 J. E. Smith, A Study of Branch Prediction Strategies,

Eight International Symposium on Computer Architecture
(ISCA), 135-48, May 1981

4
Simultaneous Multithreading

(How do I fill my issue slots?!…)

162

Sources of Parallelism

 Bit-level
 Wider processor datapaths (8163264…)

 Word-level (SIMD)
 Vector processors
 Multimedia instruction sets (Intel’s MMX and SSE, Sun’s VIS, etc.)

 Instruction-level
 Pipelining
 Superscalar
 VLIW and EPIC

 Task- and Application-levels…
 Explicit parallel programming
 Multiple threads
 Multiple applications…

163

op 1

cy
cle

s

op 3

op 2

Simple Sequential Processor

164

op 1

cy
cle

s

op 3

op 2

Pipelined Processor

op 4

op 5
op 6 (br)

165

op 1

cy
cle

s op 3
op 4

op 5
op 6 (br)

op 2

functional units

Superscalar Processor

166

op 1

cy
cle

s op 3

op 4
op 5

op 6 (br)

op 2

functional units

OOO Superscalar Processor

op 7
op 11

167

op 1

cy
cle

s op 3

op 4
op 5

op 6 (br)

op 2

functional units

Speculative Execution

op 7 ?

op 11
op 9 ?
op 8 ?

op 10 ?

op 12 op 13

168

op 1

cy
cle

s op 3

op 4
op 5

op 6 (br)

op 2

functional units

Limits of ILP

op 7 ?

op 11
op 9 ?
op 8 ?

op 10 ?

op 12 op 13

?

169

Sources of Unused Issue Slots

So
ur

ce
: T

ul
lse

n
et

 a
l.,

 ©
 IE

EE
19

95

170

Horizontal and Vertical Waste

op 1

cy
cle

s op 3 op 4

op 2

op 10

functional units

op 7

op 11
op 5op 6

Vertical Waste
61%

Horizontal Waste
39%

So
ur

ce
: T

ul
lse

n
et

 a
l.,

 ©
 IE

EE
19

95

171

Multithreading:
The Idea

Br
an

ch Issue

Br
an

ch

Br
an

ch

Br
an

ch

Br
an

ch

Issue
Br

an
ch

Br
an

ch

Br
an

ch

Br
an

ch

Br
an

ch

future

Rather than enlarging the depth of
the instruction window (more

speculation with lowering
confidence!), enlarge its “width”

 fetch from multiple threads!

172

Basic Needs of a
Multithreaded Processor

Processor must be aware of several
independent states, one per each thread:
Program Counter
Register File (and Flags)
(Memory)

Either multiple resources in the processor
or a fast way to switch across states

173

Thread Scheduling

When one switches thread?
Which thread will be run next?

Simple interleaving options:
Cycle-by-cycle multithreading
 Round-robin selection between a set of threads

Block multithreading
 Keep executing a thread until something happens

Long latency instruction found
Some indication of scheduling difficulties
Maximum number of cycles per thread executed

174

Cycle-by-cycle Interleaving
(or Fine-Grain) Multithreading

op 1

cy
cle

s op 3 op 4

op 5op 2

op 10 op 8

functional units

op 1

op 3

op 2op 5

op 4op 6 op 7op 9

op 7

op 5

op 2

op 3

op 1

op 4

op 10

op 6

op 11 co
nt

ex
t s

w
itc

he
s

175

Block Interleaving (or Coarse-Grain)
Multithreading

op 1

cy
cle

s

op 3 op 4
op 5op 2

functional units

op 1
op 3

op 2op 5
op 6 op 7op 9

op 7
op 2

op 3
op 1

op 4

op 6

co
nt

ex
t s

w
itc

he
s

op 8

176

Fundamental Requirement

Key issue in general-purpose processors
which has prevented for many years
multithreaded techniques to become
commercially relevant

It is not acceptable that single-thread
performance goes significantly down

or at all

177

Problems of Cycle-by-Cycle
Multithreading

 Null time to switch context
 Multiple Register Files

 No need for forwarding paths if threads supported are
more than pipeline depth!
 Simple(r) hardware

 Fills well short vertical waste (other threads hide
latencies ~ no. of threads)

 Fills much less well long vertical waste (the thread is
rescheduled no matter what)

 Does not reduce significantly horizontal waste (per
thread, the instruction window is not much different…)

 Significant deterioration of single thread job

178

Block Interleaving Techniques

Block Interleaving

Static Dynamic

Explicit Switch Implicit Switch
Switch-on-Load
Switch-on-Store

Switch-on-Branch

Explicit Switch
Conditional-Switch

Implicit Switch
Switch-on-Miss
Switch-on-Use

(a.k.a. Lazy-Switch-on-Miss)
Switch-on-Signal

(interrupt, trap,…)

Ad
ap

te
d

fro
m

: Š
ilc

 e
t a

l.,
 ©

 S
pr

in
ge

r1
99

9

179

Problems of Block Multithreading

Scheduling of threads not self-evident:
What happens of thread #2 if thread #1 executes

perfectly well and leaves no gap?
Explicit techniques require ISA modifications  Bad…

More time allowable for context switch
Fills very well long vertical waste (other threads

come in)
Fills poorly short vertical waste (if not sufficient

to switch context)
Does not reduce almost at all horizontal waste

180

op 1

cy
cle

s op 3

op 4
op 5

op 6

op 2

op 7
op 9

op 10
op 12
op 13

op 11
op 8

op 14

functional units

op 1
op 3

op 2op 5
op 4
op 6

op 7

op 9

op 8

op 10
op 11

op 7 op 5
op 2

op 3
op 8

op 1

op 4

op 6
op 10
op 11

Simultaneous Multithreading (SMT):
The Idea

181

Several Simple Scheduling
Possibilities

Prioritised scheduling?
Thread #0 schedules freely
Thread #1 is allowed to use #0 empty slots
Thread #2 is allowed to use #0 and #1

empty slots, etc.
Fair scheduling?
All threads compete for resources
If several threads want the same resource,

round-robin assignment

182

Superscalar Processor

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Register File

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

Multiple Buses

Multiple Buses

PC

IQ

183

Reorder Buffer

to MEM
and RF

from
F&D Unit

0
0
1
1
1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???
$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

Register Renaming
(between fetch/decode and commit)

184

What Must Be Added to a
Superscalar to Achieve SMT?

 Multiple program counters (= threads) and a
policy for the instruction fetch unit(s) to decide
which thread(s) to fetch

 Multiple or larger register file(s) with at least as
many registers as logical registers for all threads

 Multiple instruction retirement (e.g., per thread
squashing)
 No changes needed in the execution path

And also:
 Thread-aware branch predictors (BTBs, etc.)
 Per-thread Return Address Stacks

F/
D

Co
m

m
it

185

SMT Processor as a Natural
Extension of a Superscalar

Reservation
Stn.

Instruction
Fetch & Decode Unit

(Multiple Instructions per Cycle)

Reservation
Stn.

FP UnitALU 1

Commit Unit
(Multiple Instructions per Cycle)

Load/Store
Unit

Reservation
Stn.

Branch
Unit

Reservation
Stn.

ALU 2

PCPCPCPC

IQIQIQIQ

Register File(s)

186

Reorder Buffer Remembers the
Thread of Origin

 Some changes to the reorder buffer in the Commit Unit—e.g.:

to MEM
and RF

from
F&D Unit

0
1
1

1
0

—

Register Address ValueTag

from EUs

$f3 0x627f ba5a

ALU1 ???

$f5MUL2 ???

0xa87f b351

head

tail
0x1000 000c

0x1000 0008

0x1000 0004

PC

1 MUL30x2001 1234

2

2

2

1

Thread

$f3 ???

Architectural Register Identifier:
Reg # + Thread #

187

Reservation Stations

 Reservation stations do not need to know which thread an
instruction belongs to

 Remember: operand sources are renamed—physical regs, tags, etc.

addd – MUL3 ???1
subd ALU1 – ??? 0xffff fee11

0

Tag1 Tag2 Arg1 Arg2Op

ALU1:

ALU2:

ALU3:

0xa87f b351

a b
ALU

from
EUs and RF

from
F&D Unit

Thread
#2?!

Thread
#1?!

188

Does It Work?!

So
ur

ce
: T

ul
lse

n
et

 a
l.,

 ©
 IE

EE
19

96

Fetch+Decode throughput = 8 IPC

189

Main Results on Implementability
SMT vs. Superscalar

From [TullsenJun96]:
Instruction scheduling not more complex
Register File datapaths not more complex (but

much larger register file!)
Instruction Fetch Throughput is attainable even

without more fetch bandwidth
Unmodified cache and branch predictors are

appropropriate also for SMT
SMT achieves better results than aggressive

superscalar

190

Where to Fetch?

Static solutions: Round-robin
Each cycle 8 instructions from 1 thread
Each cycle 4 instructions from 2 threads, 2 from 4,…
Each cycle 8 instructions from 2 threads, and forward

as many as possible from #1 then when long latency
instruction in #1 pick rest from #2

Dynamic solutions: Check execution queues!
Favour threads with minimal # of in-flight branches
Favour threads with minimal # of outstanding misses
Favour threads with minimal # of in-flight

instructions
Favour threads with instructions far from queue head

191

What to Issue?

 Not exactly the same as in superscalars…
 In superscalar: oldest is the best (least speculation, more dependent

ones waiting, etc.)
 In SMT not so clear: branch-speculation level and optimism (cache-hit

speculation) vary across threads
 One can think of many selection strategies:

 Oldest first
 Cache-hit speculated last
 Branch speculated last
 Branches first…

 Important result: doesn’t matter too much!

 Issue Logic (critical in superscalars) can be left alone

192

Importance of Accurate Branch
Prediction in SMT vs. Superscalar

Reduce the impact of Branch Prediction was one
of the qualitative initial motivations

Results from [TullsenJun96]:
Perfect branch prediction advantage

 25% at 1 thread
 15% at 4 threads
 9% at 8 threads

Losses due to suppression of speculative execution
 -7% at 8 threads
 -38% at 1 thread ( speculation was a good idea…)

193

Bottlenecks
Sources of Unused Issue Slots

 Completion queue not very relevant (remember: this is out of the
execution path…)

 Rename register count important
 Most critical: number of register writeback ports

SMT for utilisation rate (EUs) not bandwidth!…

So
ur

ce
: Š

ilc
 e

t a
l.,

 ©
 S

pr
in

ge
r1

99
9

194

Bottlenecks

 Fetch and memory throughput
are still bottlenecks
 Fetch: branches, etc.
 Memory not addressed

 Performance vs. # of rename
registers (8T) in addition to
the architectural ones
 Infinite: +2%
 100: ref.
 90: -1%
 80 -3%
 70 -6%

 Register file access time likely
limit to # of threads IPC vs. # threads

200 physical registers

So
ur

ce
: T

ul
lse

n
et

 a
l.,

 ©
 IE

EE
19

96

195

Performance (IPC) per Unit Cost

 Superscalars are cheap only for relatively small issue bandwidth,
then quickly down

 SMT improves significantly the picture already with 2 threads and
maximum moves to larger issue bandwidths with more threads

So
ur

ce
: Š

ilc
 e

t a
l.,

 ©
 S

pr
in

ge
r1

99
9

196

Introduction of SMT
in Commercial Processors

Compaq Alpha 21464 (EV8)
4T SMT
Project killed June 2001

Intel Pentium IV (Xeon)
2T SMT
Availability since 2002

(already there before, but not enabled)
10-30% gains expected

SUN Ultra III
2-core CMP, 4T SMT

197

Intel SMT: Xeon Hyper-Threading
Pipeline

Front-end
(TC hit)

OOO
Execution

or
(TC miss)

duplicated
resources

freely shared
resources split

resources
time-shared
resources

So
ur

ce
: M

ar
r e

t a
l.,

 ©
 In

te
l2

00
2

198

Intel SMT: Xeon Hyper-Threading
Switching Off Threads

What happens when there is only one thread? What
does the OS when there is nothing to do? Ahem…
 Four modes: Low-power, ST0, ST1, and MT

Low-Power Mode
Halt0

Halt1

Int1
Int0 Halt1

Halt0

Int0
Int1

So
ur

ce
: M

ar
r e

t a
l.,

 ©
 In

te
l2

00
2

199

Intel SMT: Xeon Hyper-Threading
Goals and Results

 Minimum additional cost: SMT = approx. 5% area
 No impact on single-thread performance

 Recombine partitioned resources
 Fair behaviour with 2 threads

So
ur

ce
: M

ar
r e

t a
l.,

 ©
 In

te
l2

00
2

200

And Now, What’s Next?

Key ingredients for success so far:
Maximise compatibility, no info from programmers

beyond straight sequential code and coarse threads
Aggressive prediction and speculation of anything

predictable
Use irregular, fine-grained parallelism (ILP): it is

“easier” to extract, can be done at runtime,…
Problems:
Branch prediction accuracy hard to improve
Hard to exploit ILP any further within a thread

201

References on Simultaneous
Multithreading

 AQA 5th ed., Chapter 3
 PA, Sections 6.3, 6.4, and 6.5
 CAR, Chapter 5—Introduction
 D. M. Tullsen et al., Exploiting Choice: Instruction Fetch

and Issue on an Implementable Simultaneous
Multithreading Processor, ISCA, 1996

 H. Marr et al., Hyper-Threading Technology Architecture
and Microarchitecture, Intel Technology Journal, Q1,
2002

	Advanced Computer Architecture�—�Part I: General Purpose�Exploiting ILP Dynamically
	1
	Speed: Main Goal in General Purpose Computer Architecture
	Clock Rate�Does Not Grow Much (Anymore!)
	Sources of Parallelism
	Starting Point (Programmer Model)
	ILP?
	First Step:�Pipelining
	Simple Pipeline
	Simple Pipelining
	Simple Pipeline with Forwarding
	ILP So Far…
	Dynamic Scheduling: The Idea
	Break the Rigidity of the Basic Pipelining
	Dynamically Scheduled Processor
	Problems to Solve
	Reservation Stations
	Reservation Stations
	Problems to Solve
	WAR and WAW Data Dependences
	In-order Completion
	Out-of-order Completion
	Register Renaming
	Register Renaming
	Reservation Stations
	Dynamically Scheduled Processor
	Out-of-order Commitment and Exceptions
	A Problem with Exceptions…
	Reordering
	Reordering Instructions �at Writeback
	Reorder Buffer
	Dynamically Scheduled Processor
	Problems to Solve
	Committing Instructions (1/4)
	Committing Instructions (2/4)
	Committing Instructions (3/4)
	Committing Instructions (4/4)
	Reordering and Precise Exceptions
	Reporting Exceptions (1/4)
	Reporting Exceptions (2/4)
	Reporting Exceptions (3/4)
	Reporting Exceptions (4/4)
	Reservation Stations
	Decoding and Dependences
	No Dependence
	Dependence and Value in the ROB
	Dependence and Tag in the ROB
	Multiple Dependences?
	Dependences through Memory
	Load-Store Queues
	Load-Store Queues
	Example of Load Store Queue
	Load Queue Functionality
	Store Queue Functionality
	Example of Load Store Queue:�Normal RS Behaviour in Load Queue
	Example of Load Store Queue�Potential RAW through Memory
	Example of Load Store Queue:�RAW through Memory
	Example of Load Store Queue:�RAW through Memory (bypass)
	Example of Load Store Queue:�Stores Released by ROB
	Origins of Reordering
	Second Step: �Dynamic Scheduling
	ILP So Far…
	Superscalar Execution
	Superscalar Processor
	Third Step: Superscalar Execution
	Several Steps in Exploiting ILP
	Intel Nehalem and AMD Barcelona:�Now Oldish Microarchitectures
	Intel Skylake Microarchitecture
	AMD Zen 3 Microarchitecture
	Apple Firestorm Microarchitecture
	References on ILP
	2
	Register Renaming
	A Little History of (Modern) Renaming
	Main Dimensions in Renaming Policies
	Where Are the Rename Registers?
	Four Possible Locations for Rename Registers
	Dynamically Scheduled Processor
	Typical ROB
	Tracking the Mapping: Where is Physically an Architectural Register?
	MIPS R10000:�Merged RF with Mapping Table
	Possible States of each Register�in a Merged File
	State Transitions in a Merged File
	MIPS R10000:�32 AR, 64 PhR, Merged Register File
	MIPS R10000:�Information Flow
	State Transitions Replaced by Copying in Stand-alone RRF
	State of the Rename Registers in the Commit Unit (ROB)
	How Many Rename Registers?
	Number of Rename Registers
	Actual Choices in Commercial Implementations
	 �High-End �Processors�in 2009
	References on Register Renaming
	3
	Prediction & Speculation: The Idea
	General Problems
	Prediction & Speculation
	Precise Exceptions (1/4)
	Precise Exceptions (2/4)
	Precise Exceptions (3/4)
	Precise Exceptions (4/4)
	A General Idea
	Prediction & Speculation
	Branch Prediction and Speculation
	Control Hazards
	Control Hazards Solved �by Stalling the Pipeline
	Speculative Fetch and Decode
	Branches in the ROB
	Branches without Outcome �Block the ROB
	Correctly Predicted Branches�Are Ignored
	Mispredicted Branches �Trigger a Squash
	Branch Prediction and Speculation
	Branch Prediction
	Branch Target Buffers
	More Complex But Cheaper�Branch Target Buffers
	Which Strategy to Predict?
	Which Strategy to Predict Dynamically?
	Branch History Table
	Branch History Table
	One- vs. Two-Bit �Prediction Schemes
	One- vs. Two-bit �Prediction Schemes and Loops
	Exotic Prediction Schemes
	Prediction Accuracy
	Exploiting Correlation �(two-level or gselect Predictors)
	Exploiting Correlation �(two-level or gselect Predictors)
	McFarling gshare Predictor
	The Sky (or the Architects’ Ingenuity) Is the Limit…
	Return Address Stack
	Misprediction Has High Cost  Lots of Efforts in Improving Accuracy
	Apple Firestorm Microarchitecture
	Prediction & Speculation
	Reminder:�Dependences through Memory
	Memory Dependence�Prediction and Speculation
	Alias Prediction
	Prediction & Speculation
	Predicting the Next Miss?�Prefetching I and D into the Cache
	Prefetching�Prediction and Speculation
	Prefetchers and Memory Hierarchy
	Prefetching�Prediction and Speculation
	Prefetching�Coverage and Accuracy
	Next-Line Prefetching
	Next-N-Line (or Stream) Prefetching
	Stride Prefetching
	Stride Prefetching
	Stream Buffers
	Stream Buffers
	Prediction & Speculation
	Dynamic Data Value Prediction
	Speculation Is Not Necessarily a �Run-Time Concept
	Static Control Speculation�Example
	Static Control Speculation�Example
	Exceptions and �Static Speculation
	Static Renaming and �Hardware-Software Cooperation
	Static Renaming and Poison Bits
	Example:�Speculative Loads in Itanium (I)
	Example:�Speculative Loads in Itanium (II)
	Static Data Dependence Speculation (I)
	Static Data Dependence Speculation (II)
	Predicated (= Guarded) Execution
	Types of Prediction & Speculation
	References on Prediction & Speculation
	4
	Sources of Parallelism
	Simple Sequential Processor
	Pipelined Processor
	Superscalar Processor
	OOO Superscalar Processor
	Speculative Execution
	Limits of ILP
	Sources of Unused Issue Slots
	Horizontal and Vertical Waste
	Multithreading: �The Idea
	Basic Needs of a �Multithreaded Processor
	Thread Scheduling
	Cycle-by-cycle Interleaving�(or Fine-Grain) Multithreading
	Block Interleaving (or Coarse-Grain) Multithreading
	Fundamental Requirement
	Problems of Cycle-by-Cycle Multithreading
	Block Interleaving Techniques
	Problems of Block Multithreading
	Simultaneous Multithreading (SMT):�The Idea
	Several Simple Scheduling Possibilities
	Superscalar Processor
	Reorder Buffer
	What Must Be Added to a Superscalar to Achieve SMT?
	SMT Processor as a Natural Extension of a Superscalar
	Reorder Buffer Remembers the Thread of Origin
	Reservation Stations
	Does It Work?!
	Main Results on Implementability�SMT vs. Superscalar
	Where to Fetch?
	What to Issue?
	Importance of Accurate Branch Prediction in SMT vs. Superscalar
	Bottlenecks�Sources of Unused Issue Slots
	Bottlenecks
	Performance (IPC) per Unit Cost
	�Introduction of SMT �in Commercial Processors
	Intel SMT: Xeon Hyper-Threading�Pipeline
	Intel SMT: Xeon Hyper-Threading�Switching Off Threads
	Intel SMT: Xeon Hyper-Threading�Goals and Results
	And Now, What’s Next?
	References on Simultaneous Multithreading

